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ABSTRACT

Satellite estimates and weather forecast models have made it possible to observe and predict precipitation

over large spatial scales. Despite substantial progress in observing patterns of precipitation, characterization

of spatial patterns is still a challenge. Quantitative assessment methods for spatial patterns are essential for

future developments in prediction of the spatial extent and patterns of precipitation. In this study, pre-

cipitation patterns are characterized using three geometrical indices: (i) a connectivity index, (ii) a shape

index, and (iii) a dispersiveness index. Using multiple examples, the application of the proposed indices is

explored in pattern analysis of satellite precipitation images and validation of numerical atmospheric models

with respect to geometrical properties. The results indicate that the presented indices can be reasonably

employed for a relative comparison of different patterns (e.g., multiple fields against spatial observations)

with respect to their connectivity, organization, and shape.

1. Introduction

Spatial patterns in precipitation fields are fundamen-

tal to hydrologic modeling and streamflow analysis.

Many studies highlight the importance of precipitation

space–time variability (Fiener and Auerswald 2009;

Haile et al. 2009; Corradini and Singh 1985), which has

been proven to affect the quality of runoff predictions

(Goodrich et al. 1995; Schuurmans and Bierkens 2007).

Historically, most studies focus on temporal patterns in

precipitation data (see Grayson and Blöschl 2001b and

references therein). By nature, distributed hydrologi-

cal modeling requires some assumptions regarding the

spatial heterogeneity of precipitation. In practical ap-

plications, the variability of precipitation is often de-

scribed by the error in the magnitude of precipitation in

space and time. In addition to the magnitude of pre-

cipitation, the general pattern and its location are also

important (Foufoula-Georgiou and Vuruputur 2001;

Sorooshian et al. 2010, manuscript submitted to Bull.

Amer. Meteor. Soc.). One interesting issue regarding the

spatial variability is the extent to which precipitation

patterns affect hydrologic predictions. So far, patterns

and structures in precipitation fields are the least re-

searched mainly because of the lack of areal represen-

tation of precipitation.

In recent years, weather radar systems and satellites

have provided detailed information on spatial patterns

of precipitation that were not available from tradi-

tional point measurements. Even when high-resolution

data were available, the characterization and numeri-

cal representation of patterns are still challenging is-

sues (Grayson and Blöschl 2001a).

There are a myriad of applications for a method of

numerical–geometrical representation of patterns. For

example, a meteorologist may want to quantitatively

compare the predicted rainfall fields obtained from

a weather forecast model with the actual radar–satellite

observations. Zepeda-Arce et al. (2000) proposed sev-

eral statistical measures that can describe how well the

variability and organization of the predicted fields

matches that of the observed fields. The study confirms

that such statistical measures are very informative and

may lead to future advancements in atmospheric models.

While pixel- and event-based statistical methods offer

invaluable information, they do not provide any infor-

mation on errors resulting from the displacement of

spatial patterns (see Marzban and Sandgathe 2006 and

Brown et al. 2004 for details). In addition, pixel-based

validation approaches have the tendency to overpenalize
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displacement errors, which may result in a low score

for a good displaced forecast. The increasingly popular

object-based verification methods intend to address this

problem by focusing on the ability of models to capture

attributes such as the shape, volume, and distribution of

precipitation objects. Ebert and McBride (2000) and

Ebert and Gallus (2009) introduced the concept of con-

tiguous rain area (CRA) to decompose the total error

into volume, pattern, and displacement error. Brown

et al. (2004) defined composite rain objects as adjacent

rain objects that may appear as parts of the same rain

system and developed a method to delineate such com-

posite objects. Subsequently, they computed conven-

tional verification measures for each matched pair

(observed–estimated) of composite objects. The method

was later revised and extended by Davis et al. (2009) and

termed the Method for Object-Based Diagnostic Eval-

uation (MODE), which relies on the distance separating

the objects’ centroids to match objects in observed–

estimated spatial fields, along with a temporal criterion

to determine whether objects identified in two time steps

belong to the same rain system as it evolves. Another

class of object-oriented methods focuses on the entire

verification domain instead of individual precipitation

objects. Among others, Wernli et al. (2008) introduced a

domain-based object-oriented approach that takes into

account several components of precipitation fields in the

verification domain but does not deal with individual

pairs of matched single or composite objects. While

object-oriented methods are vital for reliable validation

analysis, they do not address geometrical features of

precipitation objects.

Another application of the geometrical represen-

tation of patterns could be validation of satellite es-

timates against radar observations. The majority of

satellite and radar validation studies are limited to

statistical analysis [e.g., Villarini et al. (2009); Tian et al.

(2009); AghaKouchak et al. (2011); Tabary et al. (2007)].

However, geometrical properties of precipitation may

also have a physical significance in practical applica-

tions. Moreover, many studies address stochastic simula-

tion of spatial fields (e.g., AghaKouchak et al. 2010a and

references therein); however, it is essential to develop

methods of testing simulated spatial patterns against

spatial measurements (Grayson and Blöschl 2001b). So

far, only a few studies are devoted to comparisons of

simulated and measured patterns (e.g., Bronstert and

Plate 1997; Welch et al. 1988a,b; Gilleland et al. 2009;

Whelan and Anderson 1996; Davis et al. 1995; Blöschl

and Kirnbauer 1991; Ahijevych et al. 2009).

Prior to an introduction to the methodology, it is es-

sential to define patterns. In mathematics, a pattern is

often defined as a process or any sequence of numbers

that may be described by a mathematical function or

stochastic process (Devlin 1994; Resnik 1999). Fractals

(Mandelbrot 1983; Falconer 1987) are also a scale-

invariant mathematical representation of patterns that are

commonly used in hydrological applications (e.g., Lovejoy

and Mandelbrot 1985; Schertzer and Lovejoy 1989). In

this study, however, a geometric framework for the de-

scription of rainfall patterns is used that is solely based

on the geometry of the rainfall pixels that are above a

certain threshold. The presented approach utilizes the

following simple geometrical concepts: 1) a minimum

theoretical perimeter; 2) a convex hull; 3) an actual pe-

rimeter; 4) a number of isolated structures; and 5) an

area of isolated clusters to characterize patterns. Using

these geometrical properties, a connectivity index be-

tween 0 and 1 is defined, where 1 indicates a connected

(organized) structure, whereas 0 implies an unorganized

(random) structure. Furthermore, a shape index is in-

troduced that identifies the departure of a pattern from

a virtual pattern of the same area with the minimum the-

oretical perimeter. The latter can be used to differentiate

between a strip-shaped and a circle-shaped precipitation

pattern. An area index is defined to describe the degree

of dispersiveness of the patterns. These indices are

meant to be used for relative comparison of multiple

patterns (e.g., radar–satellite images) with respect to

their shape, dispersiveness, and connectivity (e.g., con-

nected rainfall pixels in a satellite image) and not their

values (e.g., rain rates). For example, one can compare

the connectivity (organization) of multiple images with

that of the reference image. In the subsequent sections,

a number of examples are provided to illustrate the

application.

The paper is organized into four sections. After the

introduction, limitations of a well-known method of

pattern characterization are discussed. Then, the geo-

metrical indices are introduced and validated using

stochastically generated random fields. The third section

is devoted to the application of the proposed indices to

pattern analysis of satellite precipitation fields and val-

idation of weather prediction models. The fourth section

summarizes the conclusions and remarks.

2. Characterization of patterns

In digital topology, one important property of an im-

age is its connectivity, which shows how the structures

are interconnected. One fundamental geometrical

property of an image (here, precipitation field) is the

number of isolated structures or clusters (Vogel 2002).

Another basic property of an image is the number of

redundant connections, which is defined as the number

of holes within the pattern (Lin et al. 2007). The Euler
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number combines these two properties to produce

a measure of connectivity (Vogel 2002):

E 5 N � C, (1)

where E 5 the Euler number, N 5 the number of iso-

lated structures (clusters), and C 5 the number of re-

dundant connections.

The Euler number, alternatively known as the Euler

characteristics, ranges from 2‘ to 1‘. A positive Euler

number indicates a poorly connected pattern, whereas

a negative E implies a more connected pattern. Figure 1

illustrates how the Euler number describes the connec-

tivity of patterns. In Fig. 1a, two isolated structures (N)

are distinguishable with no redundant connections, in-

dicating the Euler number of 2 [see Eq. (1)]. In Fig. 1b,

one isolated structure and one hole (C) can be identified

(E 5 0). One can see that the Euler number for Fig. 1b,

which is obviously more connected, is less than Fig. 1a.

In Fig. 1c, the Euler number is even smaller (E 5 21),

indicating a more connected pattern than the other two

figures. Notice that this measure of connectivity is de-

fined for values above or below a given threshold. For

rainfall patterns, a hole (C) is a set of no-rain pixels (or

rainfall below a certain threshold, e.g., 1 mm hr21) en-

closed by a connected set of nonzero pixels (or rainfall

above a certain threshold). The Euler number has been

widely used in various fields including image processing,

pattern recognition, and the characterization of a net-

work of pores in porous media (e.g., Chen 1988; DeHoff

1987; Mecke and Wagner 1991; Bieri and Nef 1985;

Vogel 2002).

One limitation of this measure of connectivity is that

if there are a large number of holes or redundant con-

nections in patterns, the Euler number may result in a

misleading assessment of pattern connectivity. This is-

sue is illustrated in Figs. 2a–c using three actual radar

images obtained from the Memphis Next Generation

Weather Radar (NEXRAD) station (KNQA site, 75 km 3

75 km images, 3 May 2002). The figures show three pre-

cipitation patterns of rainfall rates above the threshold of

1 mm hr21. A visual comparison confirms that Fig. 2b is

more connected than Fig. 2a, however, the Euler number

values indicate vice versa. Furthermore, Figs. 2b and 2c,

which have the same Euler number, are significantly

different from a geometrical viewpoint. These examples

indicate the Euler number may not be sufficient to

characterize rainfall patterns.

a. Connectivity index

To overcome the above limitations, the connectivity

index (Cindex) is defined as

FIG. 1. Euler number for three patterns: (a) E 5 2, (b) E 5 0, and (c) E 5 21.

FIG. 2. The Euler number for three radar rainfall images: (a) E 5 214, (b) E 5 21, and

(c) E 5 21.
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C
index

5 1� NC� 1ffiffiffiffiffiffiffi
NP
p

1 NC
, (2)

where, Cindex 5 the connectivity index, NP 5 the num-

ber of (nonzero) pixels, and NC 5 the number of iso-

lated clusters.

The connectivity index [Eq. (2)] is calculated based on

the number of isolated clusters (NC), the total number

of nonzero pixels (or pixels above a given threshold),

and the dimension of the domain. Figure 3 provides

Cindex values for three patterns. As shown, the pattern in

Fig. 3a has a less connected structure than those of Figs.

3b and 3c. Furthermore, Fig. 3c is the most connected

pattern among the others. This is confirmed with the

connectivity indices (Cindex) of 0.68, 0.81, and 1.00 for

Figs. 3a, 3b, and 3c, respectively. For precipitation fields

presented in Fig. 2, the connectivity indices are com-

puted as (i) 0.95, (ii) 0.99, and (iii), 0.89, respectively.

The computed connectivity indices confirm that Fig. 2b

is more connected than Figs. 2a and 2c. Unlike the Euler

number that ranges from 2‘ to 1 ‘, the Cindex is

bounded between 0 and 1 as long as there is at least one

nonzero pixel. It should be noted that this index is de-

fined to compare multiple fields with respect to a refer-

ence image (e.g., simulated versus observed) and is not

designed to compare patterns with significantly different

spatial scales and/or number of pixels.

The performance of the Cindex is evaluated using

multiple stochastically generated patterns with a differ-

ent range (r) values. The range of a spatial structure is

the distance at which the random function (process)

becomes uncorrelated. That is, 2 points further apart

than the range of the function will be considered as

statistically independent. Figs. 4a–d display 4 patterns

generated with the following variogram ranges (r): 5, 15,

70, and 100 and unit sills (see Deutsch and Journel 1998

for details). As one expects, the patterns with larger

ranges (correlation distance) exhibit higher levels of

connectivity and organization (e.g., compare Figs. 4a

and 4d). In Fig. 5, the solid lines show the number of

isolated structures (Fig. 5a) and the connectivity indices

(Fig. 5b) of the patterns shown in Fig. 4. One can see that

as the number of connected structures decrease (see the

solid line in Fig. 5a), the connectivity index increases

(see the solid line in Fig. 5b). As expected, the connec-

tivity index of the pattern shown in Fig. 4d is higher than

the other three, whereas the pattern shown in Fig. 4a

exhibits the least connectivity among the others (see Fig.

5b). This is consistent with the ranges used for the simu-

lation of the fields (Fig. 4), which indicates the Cindex can

be used to reasonably compare multiple patterns in terms

of connectivity and organization. The robustness of this

index is evaluated by generating 100 random patterns

with the same correlation ranges mentioned above (5, 15,

FIG. 3. The connectivity index (Cindex) for three patterns.

FIG. 4. Stochastically generated patterns with different correlation ranges: (a) r 5 5; (b) r 5 15; (c) r 5 70;

and (d) r 5 100.
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70, and 100). The dashed lines in Figs. 5a and 5b represent

the mean number of isolated structures and the mean

connectivity indices of all 100 randomly generated pat-

terns, respectively. One can see that the connectivity in-

dices are stable and, as expected, the mean values of

indices increase as the correlation ranges increase.

b. Shape index

Both the Euler number and Cindex provide some in-

formation regarding the connectivity of patterns, and

they do not offer any additional information on the ge-

ometry of clusters. For example, Figs. 6a–c display three

patterns with the same Euler number and Cindex (E 5 1,

Cindex 5 1). To characterize rainfall patterns, however,

one may also need additional information on the ge-

ometry of patterns (e.g., to distinguish between strip-

shaped and circular patterns). The following simple

shape index (Sindex) provides additional information on

the geometrical shape of patterns:

S
index

5
P

min

P
, (3)

where Sindex 5 the shape index, Pmin 5 the theoretical

minimum perimeter, and P 5 the actual perimeter of the

pattern.

For a given area, the theoretical minimum perimeter

is achieved when the pattern is closest to a circle. This

issue is illustrated in Fig. 7 using three 8-pixel patterns.

As shown, Fig. 7c exhibits the least perimeter among the

others. The theoretical minimum perimeter of an n-pixel

pattern can be obtained as (for proofs and details, the

interested reader is referred to Yackel et al. 1997;

Donaldson 2000)

P
min

5
4 3

ffiffiffi
n
p

if b
ffiffiffi
n
p
c5

ffiffiffi
n
p

2 3 (b2 3
ffiffiffi
n
p
c1 1) if b

ffiffiffi
n
p
c 6¼

ffiffiffi
n
p

�
, (4)

where bxc 5 floor function (the largest integer not

greater than x).

Using Eq. (4), Pmin for the patterns shown in Fig. 7 can

be obtained as 12 3 [2 3 (5 1 1)]. Consequently, the shape

indices (Sindex) for Figs. 7a–7c can then be derived as 0.56,

0.75, and 1.0, respectively. Using this index, some char-

acteristics of precipitation patterns can be recognized. For

example, in Figs. 6a–6c with the same Euler number and

Cindex of 1, Sindex can be obtained as 12/32 5 0.38, 12/22 5

0.54, and 12/12 5 1.00, respectively. As shown, the index

(Sindex) is significantly different for a strip-shaped (Fig. 6a)

than a square-shaped (Fig. 6c) pattern.

In the above examples, one shape index is derived for

each image. Some geometrical properties such as area

and shape index can be estimated for all clusters within

each image separately (if the image includes multiple

clusters). The histogram of the areas/indices may pro-

vide additional geometrical information. For example,

one can plot the histogram of areas of clusters (clusters

area–frequency graph) to investigate what percentage of

clusters exceed a certain area. For the 100 stochastically

generated fields (r: 5, 15, 70, and 100) discussed above

(see section 2a), Fig. 8 displays the number of clusters

that fall in each deciles (10 quantiles) of area. Since the

number of fields and thus the number of clusters are

large, the natural log of the number of clusters is plotted

FIG. 5. (a) The number of isolated structures and (b) the connectivity

indices of the patterns shown in Fig. 4.

FIG. 6. Three patterns with similar Euler numbers and connectivity indices of 1.
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versus the deciles of area. The figure indicates that more

large clusters are present in the fields with larger r (dashed

lines). On the other hand, the patterns of fields generated

with r 5 5 and r 5 15 include a higher number of small

clusters (solid lines in Figs. 8a and 8b) compared to the

fields generated with r 5 70 and r 5 100 (dashed lines in

Figs. 8a and 8b). In general, this graph may offer further

information on the clusters within a given image.

c. Area index

Another geometrical indicator, termed as area index

Areaindex, is defined based on the concept of convex hull.

The term convex hull refers to the boundary of the

minimal convex set containing a finite set of points in

space (see the solid dashed lines in Fig. 9). The Areaindex

is described as the ratio of the actual area of pattern

divided by the area of its convex hull:

A
index

5
A

A
Convex

, (5)

where A 5 the area of the pattern, and AConvex 5 the

area of the convex hull.

Notice that if the center of each pixel is used for es-

timation of the convex hull, the following equation

should be used instead of Eq. (5):

A
index

5
A

A
Convex

1 0.5 3 P
Convex

, (6)

where PConvex is the perimeter of the convex hull. The

second term in the denominator is added to make sure

that the convex hull’s area includes parts of the pixels

that fall outside the boundary, when centers of pixels are

used to derive the convex hull. In this equation, unit size

is assumed for the pixels, and hence the area of the pattern

is equivalent to the number of pixels. When comparing

multiple patterns, those with indices closer to 1 are likely

to be more structured. On the other hand, a low index

implies higher dispersiveness of the pattern. Figures 9a–c

display three example patterns and corresponding Aindex

values computed using Eq. (6). One can visually confirm

that Figs. 9b and 9c with lower Aindex values exhibit higher

dispersiveness compared to Fig. 9a. Care should be taken

when using this index because one single pixel away from

the others can significantly change the area of the convex

hull. To avoid this situation, one can ignore extraneous

pixels (e.g., single pixels or a few pixels that result in

a drastic change in the convex area).

3. Application

In this section, the methods discussed above are ap-

plied for validation of a weather prediction model and

FIG. 7. The perimeter and Sindex of 3 patterns that consist of 8 pixels with a Pmin 5 12: (a) P 5 22,

(b) P 5 16, and (c) P 5 12.

FIG. 8. Natural log of the number of clusters vs the area of

clusters (in percentile) for 100 stochastically simulated patterns: (a)

r 5 15 (solid line) and r 5 70 (dashed line), and (b) r 5 5 (solid line)

and r 5 100 (dashed line).
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satellite precipitation estimates against radar data from

a geometrical viewpoint. It should be noted that the

following examples are provided solely to demonstrate

the application of geometrical indices in describing

spatial patterns. Statistical validation of weather fore-

cast models and satellite data is not within the scope of

this study.

a. Validation of satellite images with respect to
precipitation patterns

In this example, different satellite-based precipitation

patterns are compared to the stage II radar-based pre-

cipitation pattern. Figures 10a–10c show three satellite

images, which occurred at 0900 UTC 24 September 2005

during Hurricane Rita, with the spatial and temporal

resolutions of 0.258 3 0.258 and 3 h [Fig. 10a: Tropical

Rainfall Measuring Mission (TRMM) 3B42, Huffman et al.

(2007); Fig 10b: the Climate Prediction Center’s morph-

ing technique (CMORPH), Joyce et al. (2004); Fig. 10c:

Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks (PERSIANN),

Sorooshian et al. (2000)]. Hurricane Rita was one of

the most intense tropical cyclones that made landfall on

the U.S. Gulf Coast. Notice that in Figs. 10a–10c, only

values above the 50th percentile threshold are consid-

ered to avoid small rainfall rates. Figure 10d displays the

corresponding stage II image. The stage II data provide

estimates of precipitation using a combination of radar

and rain gauge measurements. The data is available

on the Hydrologic Rainfall Analysis Project (HRAP)

grid, with a spatial resolution of approximately 4 km.

The stage II data are aggregated in space to match the

spatial resolution of TRMM, CMORPH, and PERSIANN

data (0.258). Figures 10e–10h and 10i–10l present similar

figures for precipitation values exceeding the 75th and

90th percentiles, respectively. The domain of all figures

includes 94 3 47 pixels, each being 0.258 3 0.258. Table 1

lists the Cindex, Sindex, and the area of the patterns, shown

in Fig. 10. For the threshold of the 50th percentile, the

Cindex of the CMORPH pattern is closer to that of stage

II. With respect to the shape of patterns (Sindex), the

TRMM and CMORPH seem to be closer to the stage II

data (see columns 5–7 in Table 1). For a higher threshold

of the 75th percentiles, the Cindex values indicate that

the connectivity of PERSIANN patterns is more similar

to those of stage II. However, the Sindex values imply that

the TRMM is closer to stage II with regard to the pat-

tern’s shape. The Cindex and Sindex indices indicate that

for rainfall values above the 90th percentile thresholds,

the PERSIANN fields are more in agreement with the

radar estimates. Comparing the areas of the satellite

images, one can see that the PERSIANN and CMORPH

fields are preferred over the TRMM patterns for all

thresholds (see columns 8–10 in Table 1). The Aindex

values indicate that TRMM and CMORPH images are

closer to observations with respect to the dispersiveness

of patterns (see columns 11–13 in Table 1). It is worth

mentioning that the TRMM data have 1.5-h shift com-

pared to the other datasets. In the above application,

where the idea is to compare 2 or more images (e.g.,

satellite and radar) with each other, the closest satellite

image to the reference measurements is used. Obvi-

ously, this may have some drawbacks (e.g., unfair com-

parison) in validation analysis. It should be noted that

the above example is provided to illustrate the applica-

tion of geometrical indices in validation studies and

quantitative comparison of multiple patterns. This ex-

ample should not be considered a comprehensive vali-

dation of satellite precipitation data.

b. Validation of atmospheric models with respect to
geometrical properties

The Weather Research and Forecasting Model (WRF),

which is widely used for operational applications, fea-

tures various parameterization schemes for modeling

weather systems. In the following example, Hurricane Rita,

which occurred in September 2005, is modeled using this

model with different cumulus parameterization schemes:

FIG. 9. The Aindex for three example patterns: (a) Aindex 5 0.61, (b) Aindex 5 0.44, and

(c) Aindex 5 0.21.
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no cumulus parameterization (NCP); Kain–Fritsch (KF;

Kain 2004; Kain and Fritsch 1993; Kain and Fritsch 1990);

Betts–Miller–Janjic (BMJ; Betts and Miller 1993); and

Grell–Devenyi (GD; Grell and Devenyi 2002). In all

simulations, the 6-hourly outputs from the Global Forecast

System (GFS), developed by the National Centers for

Environmental Prediction (NCEP), are used as the initial

and boundary conditions of the model. A nested domain

system is used with the grid resolutions of 4 km and 1 km,

where the initial and boundary conditions for the high-

resolution domain are obtained from simulations of the

coarser domain. The simulation starts at 0600 UTC

20 September 2005 and continues until 0600 UTC

26 September 2005. The model settings are based on the

Noah land surface model (Chen and Dudhia 2001),

Longwave radiation (RRTM, Mlawer et al. 1997),

shortwave radiation (Dudhia 1989), the Yonsei Univer-

sity (YSU) planetary boundary layer scheme (Hong and

Dudhia 2003), and Lin et al. (1983) microphysics. Figures

11a–11d present the precipitation patterns (0900 UTC 24

September 2005) simulated using the NCP, KF, BMJ, and

GD parameterization, respectively (threshold: 50th per-

centile). Figure 11e shows the corresponding stage II

rainfall estimates. Figures 11f–11j and 11k–11o display

similar figures for rainfall values above the 75th and 90th

percentiles, respectively. The domain of all figures in-

cludes 300 3 180 pixels, each being 0.048 3 0.048. One can

see that the observed (Fig. 11e) and simulated (Figs. 11a–

11d) patterns are quite different from a geometrical

viewpoint. Table 2 summarizes the Cindex, Sindex, area,

and Aindex of the patterns, shown in Fig. 11, for rainfall

values above the following: the 50th, 75th, and 90th per-

centile thresholds. As shown, with respect to the area of

the storm, using the BMJ cumulus parameterization re-

sults in patterns closer to those of the stage II data (see

columns 8–10 in Table 2). Comparing Sindex value con-

firms that the shape indices of patterns simulated using

BMJ and GD schemes are more in agreement with the

radar observations (columns 6–7 in Table 2). For in-

stance, the shape indices of patterns simulated with

NCP, KF, BMJ, and GD parameterizations are com-

puted as 0.39, 0.4, 0.21, and 0.23, respectively (above the

50th percentile threshold). The same index for radar

observations is derived as 0.17, which is closer to those of

BMJ and GD schemes. While the area indices of BMJ

correspond better to those of radar patterns, the Aindex

values of the NCP and KF schemes deviate significantly

from reference observations. For the 75th and 90th

FIG. 10. The TRMM, CMORPH, PERSIANN, and stage II precipitation patterns for rainfall rates above

(a)–(d) the 50th, (e)–(h) 75th, and (i)–(l) 90th percentiles.

TABLE 1. The Cindex, Sindex, and area of the patterns, shown in Fig. 10, for rainfall values above the 50th, 75th, and 90th percentiles.

Data

Cindex Sindex Area (km2) Aindex

50% 75% 90% 50% 75% 90% 50% 75% 90% 50% 75% 90%

TRMM 0.73 0.87 0.75 0.23 0.30 0.24 126 665 63 140 25 795 0.32 0.35 0.24

CMORPH 0.86 0.88 0.96 0.39 0.51 0.53 143 605 71 610 28 490 0.53 0.37 0.38

PERSIANN 0.97 0.94 0.95 0.72 0.49 0.38 144 760 73 150 28 875 0.79 0.77 0.58

Stage II 0.88 0.92 0.91 0.34 0.38 0.37 147 070 73 535 29 260 0.47 0.46 0.39
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percentile thresholds, GD-derived patterns also exhibit

a good agreement with radar area indices (see columns

12–13 in Table 2). With respect to the connectivity, al-

though all parameterization schemes show higher Cindex

values than radar data, BMJ and GD are in better

agreement with reference patterns. Overall, the Cindex,

Sindex, and Aindex values indicate that the BMJ and GD

are superior to the NCP and KF (see columns 2–7 and

11–13 in Table 2). This conclusion is based on the geo-

metrical properties of precipitation fields and cannot be

generalized. The objective here is not to conduct an ex-

tensive validation study but to demonstrate the concept

of using geometrical properties for validation purposes.

In a thorough validation analysis, other statistical mea-

sures and physical details are to be considered that are

beyond the scope of this work.

4. Summary and conclusions

In one of the earliest studies on the patterns in hy-

drology, Grayson and Blöschl (2001b) predicted that, in

the future, testing spatial patterns would receive more

attention and would provide a quantum advance in the

reliability of hydrologic predictions. Recent technolog-

ical developments in the field of remote sensing have

made it possible to observe precipitation (and many

other weather variables) over large spatial scales. These

data allow researchers to investigate issues that were not

possible from point measurements. Despite substantial

progress in observing patterns of weather variables,

characterization of spatial patterns is still a challenge.

While a great deal of effort is put to statistical validation

of satellite estimates, uncertainties associated with spa-

tial patterns are not well researched. New models and

spatial analysis tools are to be developed for such vali-

dation studies.

In addition to the remotely sensed patterns, many nu-

merical weather forecast models also predict precipi-

tation patterns for the near future. However, the accuracy

of the predicted patterns from weather forecast models is

still an open question. Future improvements in modeling

techniques largely depend on comprehensive validation

studies. The importance of this issue has motivated re-

search initiatives such as the Spatial Forecast Verifica-

tion Methods Intercomparison Project, which aims to

develop new validation and verification methods for

spatial forecasts (see Gilleland et al. 2009 and Ahijevych

et al. 2009 for an extensive review and qualitative com-

parisons of model verification techniques). Without de-

veloping quantitative assessment methods for spatial

FIG. 11. Simulated Hurricane Rita precipitation patterns for rainfall values above (a)–(e) the 50th, (f)–(j)

75th, and (k)–(o) 90th percentiles. NCP, KF, BMJ, and GD are shown.

TABLE 2. Cindex, Sindex, and area of the patterns, shown in Fig. 11, for rainfall values above the 50th, 75th, and 90th percentiles.

Data

Cindex Sindex Area (km2) Aindex

50% 75% 90% 50% 75% 90% 50% 75% 90% 50% 75% 90%

NCP 1.00 0.99 0.99 0.39 0.25 0.30 93 104 46 528 18 608 0.83 0.53 0.33

KF 0.99 1.00 1.00 0.40 0.43 0.31 66 656 33 344 13 328 0.75 0.58 0.40

BMJ 0.95 0.96 0.99 0.21 0.27 0.32 136 224 68 128 27 200 0.40 0.33 0.32

GD 0.96 0.97 0.95 0.23 0.15 0.16 74 096 37 056 14 816 0.60 0.39 0.18

Stage II 0.85 0.89 0.93 0.17 0.16 0.19 148 144 73 536 29 248 0.35 0.36 0.24
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patterns, future improvements in prediction of the spa-

tial extent and patterns of precipitation may be limited.

In this study, connectivity, as a spatial property of pat-

terns, is characterized using a geometrical index (Cindex).

The connectivity index is validated using stochastically

generated patterns with different levels of connectivity

(organization). A shape index (Sindex) is introduced that

describes patterns quantitatively based on their departure

from a virtual pattern of the same area with the minimum

theoretical perimeter. Furthermore, an index is intro-

duced to describe the dispersiveness of patterns (Aindex).

The application of the proposed indices is demon-

strated in the validation of various satellite precipitation

estimates and a weather prediction model from a geo-

metrical point of view. The results showed that the indices

can be used to compare multiple patterns with respect to

a reference pattern. In fact, all indices are designed to

evaluate the organization, structure, and dispersiveness

of one or more patterns (e.g., multiple satellite data) with

respect to a reference (e.g., radar image). The indices are

not meant to compare fields in different spatial scales

(e.g., fields with a significantly different number of pixels

and dimensions). For example, a precipitation field with

a spatial resolution of 18 should not be compared with

the same image with a spatial resolution of 0.258 because

the number of pixels in the two fields are significantly

different, which may result in unreliable measures of

geometrical properties. One possible solution to this

limitation is to aggregate the data into the same spatial

resolution before comparing geometrical patterns. Ad-

ditionally, other factors such as domain size may be im-

portant for the interpretation of the results. For example,

if the domain size is too big it may not be possible to

reasonably capture the geometrical features. For geo-

metrical analysis, the optimal size of the domain depends

on the object(s) being investigated. If the size of the do-

main is too big, one can divide the domain to 4, 8, or 16

panels and investigate each panel separately.

In the examples provided here, stage II estimates are

used as the reference dataset. Intuitively, unreliable surface

precipitation data may strongly affect validation and veri-

fication analysis regardless of the choice of the metric (e.g.,

statistical, geometrical, and object-oriented metrics). It is

well known that radar estimates are subject to various types

of errors including beam blockage, anomalous propaga-

tion, and beam overshooting, among others (Krajewski

and Smith 2002). Based on the available data, gauge-

adjusted radar estimates are the best area approximation

of precipitation (AghaKouchak et al. 2010b). In general,

the consequences of radar uncertainties in validation anal-

ysis are rather general and are not limited to this study.

In addition to the aforementioned indices, different

ways of numerically representing patterns (e.g., cluster

area–frequency plot) are discussed. The so-called cluster

area–frequency graph can be used when a large number

of simulated patterns are compared to spatial observa-

tions. This tool can also be useful for the relative com-

parison of multiple sets of stochastically generated

fields with certain statistical properties. This will allow

one to find out, for example, which set (of fields) is spa-

tially more connected and/or which set is more random.

Along with other means of statistical validation tech-

niques, the proposed indices can be used for validation of

satellite precipitation data. Furthermore, the indices can

be employed to evaluate the performance of numerical

weather prediction models with respect to geometrical

properties of predicted precipitation patterns. Studying

patterns of precipitation may also lead to a better un-

derstanding of the spatial variability of precipitation.

There are various representations of space–time rainfall

organization (see Zepeda-Arce et al. 2000 and references

therein); however, most models are based on some sta-

tistics of precipitation data and hence do not consider the

geometrical details of rainfall patterns. In fact, preserving

the statistical properties of a process does not necessarily

lead to the representation of entire geometrical patterns

(Grayson and Blöschl 2001a). One can argue that the

inability to capture the geometrical properties of pre-

cipitation may limit the quality of precipitation forecasts–

estimation. However, detailed studies are required to

evaluate the significance of spatial patterns in the un-

certainty of precipitation estimates–forecasts.

As mentioned earlier, traditional statistical verification

measures summarize pixel-to-pixel differences (e.g., mean

square error, probability of detection, and false alarm

ratio) between observation and forecasts–estimates but

do not address errors related to spatial patterns, dis-

placement, and location of the storm event (Brown et al.

2004; Marzban and Sandgathe 2006). In addition, tra-

ditional pixel-based verification measures tend to over-

penalize displacement errors, which results in many good

forecasts–estimates being overlooked. One advantage of

the introduced geometrical indices is that they do not

overpenalize good forecasts–estimates because of dis-

placement errors. On the hind side, however, geometri-

cal indices cannot detect displacement and storm location

errors. Therefore, one may opt to employ the geometrical

indices along with other object-oriented verification

methods such as CRA (Ebert and McBride 2000; Ebert

and Gallus 2009) and MODE (Davis et al. 2009), among

others.

In addition to the validation of weather prediction

models and satellite estimates, assessing errors in pattern

and location attributes are important for distributed

hydrologic modeling [e.g., the effects of connectivity

(organization) of precipitation patterns on hydrologic
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predictions]. That is, how an organized precipitation pat-

tern is different than an unorganized (random) pattern

with respect to the output hydrograph of a distributed

model. Efforts are underway by the authors to demon-

strate whether the geometrical properties of rainfall fields

have physical significance in practical applications (e.g.,

hydrologic modeling). Similar research questions are also

considered when reconstructing small-scale precipitation

variability from regional-scale averages (statistical down-

scaling). For reliable rainfall downscaling, it is important

to know how geometrical properties of precipitation

change when rainfall fields are downscaled to finer scales

(e.g., from 0.258 to 0.048). Future research in this area

may answer to what extent the geometrical features of

precipitation change with scale, and more importantly,

whether the geometrical properties of precipitation

change with scale systematically, such that they can be

formulated. This information can significantly advance

statistical downscaling techniques.

Given the available spatial data, we believe that in the

near future more effort will be concentrated to improve

spatial analysis techniques by including geometrical

properties and other means of pattern representation.

We need to emphasize that geometrical properties of

precipitation are not limited to those introduced in this

paper, and we also do not claim that the presented indices

are sufficient to distinguish all geometrical features. Fur-

thermore, the authors acknowledge that the indices may

not necessarily distinguish differences between geometrical

properties of multiple patterns due to a variety of rea-

sons (e.g., significant differences in numbers of pixels,

domain size, and dispersiveness of pixels among others).

Defining reliable and meaningful geometrical represen-

tations merits a great deal of research. This study was an

attempt to contribute to understanding the geometrical

properties of precipitation. It is worth pointing out that

the presented geometrical indices, similar to other val-

idation metrics, provide the tools to detect potential

deficiencies in estimates–simulations with respect to ob-

servations. Interpretation of their meanings, however,

depends largely on the problem at hand. It is hoped that

future advancements in this area lead to better prediction–

representation of precipitation from a geometrical point

of view.
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