
Strong Edge-Coloring for

Cubic Halin Graphs

Gerard Jennhwa Chang123∗ and Daphne Der-Fen Liu4†

1Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

2Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

3National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan

4Department of Mathematics, California State University, Los Angeles, USA

November 4, 2011 (revision January 11, 2012)

Abstract

A strong edge-coloring of a graph G is a function that assigns to each edge

a color such that two edges within distance two apart must receive different

colors. The minimum number of colors used in a strong edge-coloring is the

strong chromatic index of G. Lih and Liu [14] proved that the strong chromatic

index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains

an open problem to determine which of such graphs have strong chromatic index

6. Our article is devoted to this open problem. In particular, we disprove a

conjecture of Shiu, Lam and Tam [18] that the strong chromatic index of a

cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6.

1 Introduction

The coloring problem considered in this article has restrictions on edges within dis-

tance two apart. The distance between two edges e and e′ in a graph is the minimum
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k for which there is a sequence e0, e1, . . . , ek of distinct edges such that e = e0,

e′ = ek, and ei−1 shares an end vertex with ei for 1 ≤ i ≤ k. A strong edge-coloring

of a graph is a function that assigns to each edge a color such that any two edges

within distance two apart must receive different colors. A strong k-edge-coloring is a

strong edge-coloring using at most k colors. The strong chromatic index of a graph

G, denoted by χ′
s(G), is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [8, 9] for cubic

planar graphs. A trivial upper bound is that χ′
s(G) ≤ 2∆2 − 2∆ + 1 for any graph

G of maximum degree ∆. Fouquet and Jolivet [8] established a Brooks type upper

bound χ′
s(G) ≤ 2∆2 − 2∆, which is not true only for G = C5 as pointed out by Shiu

and Tam [19]. The following conjecture was posed by Erdős and Nešeťril [5, 6] and

revised by Faudree, Schelp, Gyárfás and Tuza [7]:

Conjecture 1. For any graph G of maximum degree ∆,

χ′
s(G) ≤

{

5
4
∆2, if ∆ is even;

5
4
∆2 − 1

2
∆ + 1

4
, if ∆ is odd.

Faudree, Schelp, Gyárfás and Tuza [7] also asked whether χ′
s(G) ≤ 9 if G is cubic

planar. If this upper bound is proved to be true, it would be the best possible. For

graphs with maximum degree ∆ = 3, Conjecture 1 was verified by Andersen [1] and by

Horák, Qing and Trotter [12] independently. For ∆ = 4, while Conjecture 1 says that

χ′
s(G) ≤ 20, Horák [11] obtained χ′

s(G) ≤ 23 and Cranston [4] proved χ′
s(G) ≤ 22.

The main theme of this paper is to study strong edge-coloring for the following

planar graphs. A Halin graph G = T ∪ C is a plane graph consisting of a plane

embedding of a tree T each of whose interior vertex has degree at least 3, and a cycle

C connecting the leaves (vertices of degree 1) of T such that C is the boundary of

the exterior face. The tree T and the cycle C are called the characteristic tree and

the adjoint cycle of G, respectively. Strong chromatic index for Halin graphs was first

considered by Shiu, Lam and Tam [18] and then studied in [19, 13, 14].

A caterpillar is a tree whose removal of leaves results in a path called the spine

of the caterpillar. For k ≥ 1, let Gk be the set of all cubic Halin graphs whose

characteristic trees are caterpillars with k + 2 leaves. For a graph G = T ∪ C in Gk,

let P : v1, v2, . . . , vk be the spine of T and each vi is adjacent to a leaf ui for 1 ≤ i ≤ k

with v1 (resp. vk) adjacent to one more leaf u0 = v0 (resp. uk+1 = vk+1). We draw G

on the plane by putting the path v0Pvk+1 horizontally in the middle, and the pending
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edges (leaf edges) viui, 1 ≤ i ≤ k, by either up or down edges vertically to P . See

Figure 1 for an example of G8.
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Figure 1: The graph G2,3,3 in G8.

From this drawing, we associate G with a list of positive integers (n1, n2, . . . , nr),

where ni is the number of maximum consecutive up or down edges, starting from the

leftmost to the rightmost on P . We use Gn1 ,n2,...,nr
to denote this graph. For instance

the graph in Figure 1 is G2,3,3. Notice that n1 + n2 + · · ·+ nr = k. For a special case

when these pending edges are all in the same direction (up or down), the graph Gk

is called the necklace and denoted by Nek in [18]. Notice that Gk is the only graph

in Gk for k ≤ 3.

Observation 1. Gn1,n2,...,nr

∼= Gnr ,...,n2,n1
.

Observation 2. Gn1,n2,...,nr,1
∼= Gn1 ,n2,...,nr+1.

It is easy to see that χ′
s(G) ≥ 6 for any G ∈ Gk, k ≥ 1. Shiu, Lam and Tam [18]

obtained the following results:

•

χ′
s(Gk) =



















9, k = 2;

8, k = 4;

7, k is even and k ≥ 6;

6, k is odd.

• If G ∈ Gk with k ≥ 4, then 6 ≤ χ′
s(G) ≤ 8.

• If G is a cubic Halin graph, then 6 ≤ χ′
s(G) ≤ 9.

Moreover, the authors [18] raised the following conjectures:

Conjecture 2. If G ∈ Gk with k ≥ 5, then χ′
s(G) ≤ 7.
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Conjecture 3. If G ∈ Gk with odd k ≥ 5, then χ′
s(G) = 6.

Conjecture 4. If G = T ∪ C is a Halin graph, then χ′
s(G) ≤ χ′

s(T ) + 4.

Faudree, Schelp, Gyárfás and Tuza [7] proved, for any tree T , it holds that χ′
s(T ) =

maxuv∈E(T )(deg(u)+deg(v)−1). Conjecture 4 was confirmed by Lai, Lih and Tsai [13],

who proved a stronger result that χ′
s(G) ≤ χ′

s(T )+ 3 for any Halin graph G = T ∪C

other than G2 and wheels Wn with n 6≡ 0 (mod 3), where Wn = K1,n ∪Cn. Note that

χ′
s(W5) = χ′

s(K1,5) + 5; and χ′
s(G) = χ′

s(T ) + 4 for G = G2 or G = Wn with n 6≡ 0

(mod 3) and n 6= 5.

Conjecture 2 was confirmed by Lih and Liu [14], who proved a more general result

that χ′
s(G) ≤ 7 is true for any cubic Halin graph other than G2 and G4. Hence, the

strong chromatic index for any cubic Halin graph G 6= G2, G4 is either 6 or 7.

It remains open to determine the cubic Halin graphs G with χ′
s(G) = 6 (or the

ones with χ′
s(G) = 7). Our aim is to investigate this problem. In particular, we

establish methods that can be used to study the graphs Gk. As a result, we discover

counterexamples to Conjecture 3. We prove that for any k ≥ 7, there exists graph

G ∈ Gk with χ′
s(G) = 7; and for any k 6= 2, 4, there exists G ∈ Gk (other than

necklaces) with χ′
s(G) = 6. In Section 4, we determine the value of χ′

s(G) for some

special families of graphs G in Gk.

2 Cubic Halin graphs G with χ′
s(G) = 6

This section gives some cubic Halin graphs with strong chromatic index 6. We begin

with the development of several general transformation theorems for Halin graphs.

For a positive integer r, an r-tail of a tree T is a path Pr : v1, v2, . . . , vr, vr+1

in which v1 is not a leaf but all vertices in Li = {u 6∈ P : uvi ∈ E(T )} are leaves

for 1 ≤ i ≤ r. For integer s < r, cutting Ps from T means deleting the vertices

{v1, v2, . . . , vs−1} ∪1≤i≤s Li from T , which results in a tree denoted by T 	Ps. Notice

that vs becomes a leaf adjacent to vs+1 in T 	 Ps.

Suppose P : v1, v2, . . . , vr, vr+1 is an r-tail of the characteristic tree T of a Halin

graph G = T ∪ C . For any j with 1 ≤ j ≤ r, the vertices in ∪1≤i≤jLi form a

consecutive portion on the adjoint cycle C . See Figure 2 for an example of a 4-tail.

For any two vertices in ∪2≤i≤rLi, we may regard that they are on the same or different

sides of L1. For instance, in Figure 2, u1
3 and u2

3 are on the same side of L1, while u1
2
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and u2
2 are on different sides of L1. For s < r, the tree T 	 Ps is the characteristic

tree of a new Halin graph, denoted by G 	 Ps, whose adjoint cycle is obtained from

C by replacing the segment {x}∪1≤i≤s Li ∪ {y} by the path xvsy originally not in G,

where x (respectively, y) is the vertex in C right before (respectively, after) ∪1≤i≤sLi.

See the dashed path for xv3y in Figure 2.
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Figure 2: A cutting 4-tail from T , resulting in G 	 P4 with two new edges, v3x and

v3y, while vertices in {v1, v2} ∪ L1 ∪ L2 ∪ L3 are all gone.

We denote a 4-cycle by (x1, x2, x3, x4), which consists of the edges x4x1, and xixi+1

for i = 1, 2, 3.

Lemma 3. Suppose (x1, x2, x3, x4) is a 4-cycle in a graph G in which each xi is

adjacent to a vertex yi not in the 4-cycle for 1 ≤ i ≤ 4. If χ′
s(G) = 6, then for every

strong 6-edge-coloring f of G we have

(i) f(x1y1) = f(x3y3) and f(x2y2) = f(x4y4), and

(ii) f(y3y4) = f(x1x2) whenever y3 is adjacent to y4.

Proof. Part (i) follows from that for each i the edges on the 4-cycle (x1, x2, x3, x4)

together with the edges xiyi and xi+1yi+1 use all the 6 colors, where x5y5 = x1y1.

Part (ii) follows from that the edges on the 4-cycle (x3, y3, y4, x4) together with

the two edges x1x4, x2x3 use all the 6 colors. See Figure 3 for an illustration.

We now consider the cutting tail operation for the characteristic tree of a cubic

Halin graph G = T ∪ C . We shall study the conditions for which such an operation

preserves the fact that χ′
s(G) = 6.

5



t

t

t

t

t

t

t

t

y2

y1

x2

x1

x3

x4

y3

y4

2

1
3

4

5
6

b

a

c

Figure 3: a, b, c are forced to be 2, 1, 3, respectively.

Theorem 4. Suppose P : v1, v2, v3, v4 is a 4-tail of the characteristic tree T of a cubic

Halin graph G = T ∪ C, where L1 = {u0, u1} and Li = {ui} for i ≥ 2. If u2 and u3

are on the same side of L1, then χ′
s(G) = 6 if and only if χ′

s(G 	 P2) = 6.

Proof. (⇒) Suppose χ′
s(G) = 6. Let f be a strong 6-edge-coloring of G. Without loss

of generality, we may assume that f(xu0) = 1, f(u0u1) = 2, f(u1u2) = 3, f(v1u0) = 4,

f(v1u1) = 5, and f(v1v2) = 6 as the bold faced numbers in Figure 4. It is then the case

that f(v2u2) = 1. Repeatedly applying Lemma 3, we have f(u2u3) = 4, f(v2v3) = 2,

f(v3u3) = 5, f(u3z) = 6 and f(v3v4) = 3 (see Figure 4). In G 	 P2, we use the old

color for edges in G, and color the new edges xv2 and v2y by 1 and 4, respectively. It

is easy to check that the new coloring is a strong 6-edge-coloring for G 	 P2. Hence,

χ′
s(G 	 P2) = 6.

(⇐) Suppose χ′
s(G 	 P2) = 6. Let f ′ be a strong 6-edge-coloring of G 	 P2.

Without loss of generality, assume that the colors are as in Figure 4. We may delete

the edges xv2 and v2y, and extend the coloring to G using the colors as in Figure 4.

This gives a strong 6-edge-coloring of G, so χ′
s(G) = 6.
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Figure 4: A cutting G 	 P2.
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Corollary 5. Suppose n1 + n2 + · · · + nr ≥ 2. Then χ′
s(Gn1,n2,...,nr

) = 6 if and only

if χ′
s(Gn1,n2,...,nr+2) = 6.

Theorem 6. Suppose P : v1, v2, v3, v4, v5 is a 5-tail of the characteristic tree T of a

cubic Halin graph G = T ∪ C, where L1 = {u0, u1} and Li = {ui} for i ≥ 2. Assume

u2 and u3 are on different sides of L1, while u2 and u4 are on the same side of L1. If

χ′
s(G 	 P2) = 6, then χ′

s(G) = 6.

Proof. Let f ′ be a strong 6-edge-coloring of G 	 P2. By Lemma 3, without loss of

generality, we may assume that f ′(v3v4) = 1, f ′(v2v3) = 2, f ′(v2y) = 3, f ′(v4u4) =

f ′(wx) = 4, f ′(v4v5) = f ′(xv2) = 5 and f ′(v3u3) = f ′(u4z) = 6, as the bold faced

numbers shown in Figure 5. We delete the edges xv2 and v2y from G 	 P2, and

extend the coloring to G using the colors shown in Figure 5. This gives a strong

6-edge-coloring of G, so χ′
s(G) = 6.
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Figure 5: A cutting G 	 P2.

Remark that unlike Theorem 4 the converse of Theorem 6 is not true. This can be

seen by the example given blow that χ′
s(G1?8) = χ′

s(G1?6,2) = 6, while χ′
s(G1?6) = 7.

(See Corollary 11.)

Corollary 7. If n1+n2+· · ·+nr ≥ 2 and χ′
s(Gn1 ,n2,...,nr ,1) = 6, then χ′

s(Gn1,n2,...,nr,1,2) =

6.

Corollary 8. Assume χ′
s(Gn1,n2,...,nr−1,1) = 6 where n1 + n2 + · · · + nr−1 ≥ 2. Then

χ′
s(Gn1,n2,...,nr−1,F1,F2,...,Fk,1) = 6, where each Fi is either a single positive even integer,

or a list of two integers, (1, t), for some odd integer t. In particular, χ′
s(Gn1,n2,...,nr−1,1?m) =

6 for odd m, where 1 ? m stands for a sequence of m 1’s.
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Proof. Assume χ′
s(Gn1,n2,...,nr−1,1) = 6. It suffices to prove the result for the case

k = 1. Assume F1 is a single even integer, F1 = nr. By Corollary 5 and Observation

2,

6 = χ′
s(Gn1,n2,...,nr−1,1) = χ′

s(Gn1,n2,...,nr−1,1+nr
) = χ′

s(Gn1,n2,...,nr−1,nr,1).

Next, assume F1 is a list of two integers (1, t) for some odd t = 2s + 1. By

Corollaries 7 and 5, and Observation 2,

6 = χ′
s(Gn1,n2,...,nr−1,1,2) = χ′

s(Gn1,n2,...,nr−1,1,2(s+1)) = χ′
s(Gn1,n2,...,nr−1,1,t,1).

Let k be an even integer. Although it is known [18] that χ′
s(Gk) > 6, there exist

graphs G ∈ Gk with χ′
s(G) = 6. Figures 6 and 7 show two examples. For positive

integers x and n, we denote x ? n as an n-term repeated sequence of x.
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Figure 6: A strong 6-edge-coloring for G2,2,2 = G2,2,1,1.
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Figure 7: A strong 6-edge-coloring for G1?8.

By the results we have shown, one can verify that for every positive integer

k 6= 2, 4, there exists G ∈ Gk (other than necklaces) with χ′
s(G) = 6. This is be-

cause χ′
s(G1) = χ′

s(G1,1,1) = χ′
s(G2,2,1,1) = χ′

s(G1?8) = 6, by Corollary 8, one gets

χ′
s(G2,2,1?m) = 6 for even m ≥ 4, and χ′

s(G1?n) = 6 for n 6= 2, 4, 6.
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3 Cubic Halin graphs G with χ′
s(G) = 7

We present some cubic Halin graphs with strong chromatic index 7. In particular, we

prove that for any k ≥ 7, there exists G ∈ Gk with χ′
s(G) = 7.

Let us start with an example, χ′
s(G2,2) = 7. Suppose to the contrary that

χ′
s(G2,2) = 6. Choose a strong 6-edge-coloring f for G2,2. By Lemma 3 (i), f(v0u3) =

f(v4v5). Since the color f(v0u3) has to be used by the 4-cycle (u1, u2, v2, v1), it is the

case that f(v0u3) = f(u2v2), and so f(v4v5) = f(u2v2), a contradiction.

Lemma 9. Let G = G2,3,1,n4,n5...,nr
with r ≥ 4. If f is a strong 6-edge-coloring for G,

then f(u1v1) = f(u6u7+n4
) = f(v7v8).

Proof. Without loss of generality, assume that f(v0u1) = 1, f(v0v1) = 2, f(v0u3) = 3,

f(v1u1) = 4, f(u1u2) = 5, and f(v1v2) = 6. See the bold faced numbers in Figure

8. Then f(v2u2) = 3. By Lemma 3 (i), f(u2u6) = 2, f(v2v3) = f(u4u5) = 1, and

f(v4v5) = 3. See the italic numbers in Figure 8.

Suppose f(v3u3) = x and f(u3u4) = y. Then x ∈ {4, 5} and y ∈ {4, 5, 6}. By

Lemma 3, f(v5u5) = x and f(v5v6) = y. Let z be the only label in {4, 5, 6} − {x, y}.

Then {f(v6v7), f(v6u6)} = {1, z}, since v6v7 and v6u6 cannot be labeled by 2, 3, x, y.

Let f(u6u7+n4
) = a. Then a 6∈ {1, 2, 3, 5, y, z}. Hence, it must be the case that

a = x 6= 5, implying a = x = 4.

By Lemma 3 (i), f(u5u7) = f(v3v4) = c ∈ {5, 2}. If c = 5, then f(v6v7) = 1

and f(v6u6) = z = c = 5, which is impossible as f(u1u2) = 5. Hence, c = 2. Then

f(v7u7) 6∈ {1, 2, x, y, z}, so f(v7u7) = 3. Consequently, f(v7v8) = b 6∈ {1, 2, 3, y, z}.

Therefore, b = x = 4. This completes the proof.
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Figure 8: In G2,3,1,n4,n5,...,nr
, labels a and b are forced to be 4.
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Theorem 10. The following graphs have strong chromatic index 7:

(a) G2,3,1,n4
.

(b) G2,3,1,1,n5,n6,...,nr
with r ≥ 5.

(c) G2,3,1,3,n5
.

(d) G2,3,1,3,2,n6,n7,...,nr
with r ≥ 6.

(e) G2,3,1,3,4,n6
.

(f) G2,3,1,3,4,2,n7,n8,...,nr
with r ≥ 7.

Proof. For each case in the following, we suppose to the contrary that the given graph

has strong chromatic index 6. Let f be a strong 6-edge-coloring for G. We shall derive

a contradiction for each case.

(a) By Corollary 5 we may assume that n4 ≤ 2. By Lemma 9, f(u6u7+n4
) =

f(v7v8), which contradicts the fact that the edges u6u7+n4
and v7v8 are within distance

two apart.

(b) Since n4 = 1, by Lemma 9, f(u6u8) = f(v7v8), which contradicts the fact that

the edges u6u8 and v7v8 are distance two apart.

(c) By Corollary 5 we may assume that n5 ≤ 2. By Lemma 9 and Corollary 5,

f(u6u10) = f(v7v8) = f(u9u10+n5
). For the case n5 = 1, this is a contradiction as

u6u10 and u9v11 are of distance two apart. For the case n5 = 2, by Lemma 3 (i),

f(u6u10) = f(v11v12), and so f(v11v12) = f(u9v12), a contradiction.

The proofs for (d), (e), and (f) are similar. We leave the details to the reader.

An immediate consequence of Theorem 10 is that for every integer k ≥ 7, there

exists G ∈ Gk with χ′
s(G) = 7. This gives infinite counter examples to Conjecture 3.

4 Special Families

We apply the results and methods established in the previous sections to completely

determine the value of χ′
s(G) for several families of graphs G in Gk.

10



Corollary 11. For m > 1, we have

χ′
s(G1?m) =











9, m = 2;

7, m = 4, 6;

6, otherwise.

Proof. For m = 2, as G1,1 = G2 and χ′
s(G2) = 9 [18], so the result holds. For m = 4,

G1?4 = G2,2 so χ′
s(G1?4) = 7.

Because G3 = G1?3 and χ′
s(G3) = 6, so χ′

s(G1?3) = 6. By Corollary 8 (letting

n1 = n2 = · · · = nr−1 = 1) and Figure 7 the result holds for m = 5 and m > 7.

It remains to show that χ′
s(G1?6) > 6. Assume to the contrary χ′

s(G1?6) = 6. As

G1?6 = G2,1,1,2, we may let f be a strong 6-edge-coloring for G2,1,1,2. Without loss of

generality, assume f(v0u1) = 1, f(v0v1) = 2, f(v0u3) = 3, f(u1u2) = 4, f(v1u1) = 5,

and f(v1v2) = 6. Then f(v2u2) = 3, f(v2v3) = 1, and f(u2u4) = 2. These imply that

{f(v3v4) = f(v3u3)} = {4, 5}, so f(v4u4) = f(v0u1) = 6. By Lemma 3, it must be

f(v6v7) = 6, which is a contradiction as v6v7 and v4u4 are distance two apart.

Corollary 12. For m > 2, we have

χ′
s(G2?m) =

{

7, m = 2;

6, otherwise.

Proof. At the beginning of Section 3, we have learned that χ′
s(G2,2) = 7. Figure

6 shows a strong 6-edge coloring f for G3?2. In the following we define a recursive

strong 6-edge coloring for G2?m, m ≥ 3.

Initially, let the coloring in Figure 6 be f2. Suppose we have a strong 6-edge

coloring fm for G2?m. Extend fm to a strong 6-coloring fm+1 for G2?(m+1) by:

fm+1(ww′) = fm(ww′) if ww′ ∈ E(G2?m);

fm+1(v2m+1v2m+2) = fm(u2m−1u2m);

fm+1(u2m−2u2m+1) = fm+1(v2m+2v2m+3) = fm(v2m+1u2m−2);

fm+1(u2mu2m+3) = fm+1(v2m+1u2m+1) = fm(v2m+1u2m);

fm+1(v2m+2u2m+2) = fm(v2m−1v2m);

fm+1(u2m+1u2m+2) = fm(v2mu2m); and

fm+1(v2m+3u2m+2) = fm(v2mv2m+1).

It is easy to check that the above is a strong 6-edge coloring for G2?(m+1). We shall

leave the details to the reader.
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Corollary 13. For m > 1, we have

χ′
s(G3?m) =

{

7, m = 2, 4, 6;

6, otherwise.

Proof. We first consider m 6= 2, 4, 5. Since χ′
s(G3) = χ′

s(G5) = 6, by Observations

1 and 2 we have χ′
s(G1,3,1) = 6. By Corollary 5, we get χ′

s(G3,3,3) = 6. Hence, the

result holds for m = 1, 3.

Assume m ≥ 6. If χ′
s(G2,3?(m−4),2) = 6, then by Corollary 5, χ′

s(G4,3?(m−4),4) =

χ′
s(G1,3?(m−2),1) = χ′

s(G3?m) = 6. Hence, it is enough to find a strong 6-edge-coloring

f for G2,3?(m−4),2.

In the following we let f(v0u1) = 1, f(v0v1) = 2, f(v0u3) = 3, f(u1u2) = 4,

f(v1u1) = 5, and f(v1v2) = 6. Consequently, by Lemma 3, f(v2v3) = f(u4u5) = 1,

f(u2u6) = f(v7v8) = 2, and f(u2v2) = f(v4v5) = 3. Since f(v5v6), f(u2u6) 6= 4, so the

color 3 has to be used in the 4-cycle (u6u7v7v6), it must be the case that f(v7u7) = 3.

Assume m is even. Let m − 4 = 2k. Define f(v4u4) = 4, f(u3u4) = 6, and the

remaining by the following recursive process for 1 ≤ t ≤ 2k:

f(v3tv3t+1) =

{

f(v3t−2u3t−2) if t is even;

f(v3t−3v3t−2) if t is odd.

f(v3tu3t) =

{

f(u3t−2u3t−1) if t is even;

f(v3t−2u3t−2) if t is odd.

f(u3tu3t+1) =

{

f(v3t−1u3t−1) if t is even;

f(u3t−2u3t−1) if t is odd, t ≥ 3.

f(v3t+1u3t+1) =

{

f(v3t−2v3t−1) if t is even;

f(v3t−1u3t−1) if t is odd, t ≥ 3.

By Lemma 3, the colors for the remaining edges are fixed. It is not hard to see that

f is a strong 6-edge-coloring for G2,3?(2k),2. See Figure 9 for an example.

Assume m is odd. Let m−4 = 2k+1. Let f(v3v4) = 4, f(v3u3) = 5, f(u3u4) = 6,

and f(u4v4) = 2. For 2 ≤ t ≤ 2k, define f by the following recursive process:

12
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Figure 9: A strong 6-edge-coloring for G2,3,3,2.

f(v3tv3t+1) =

{

f(v3t−3v3t−2) if t is even;

f(u3t−2u3t−1) if t is odd.

f(v3tu3t) =

{

f(u3t−2u3t−1) if t is even;

f(v3t−2u3t−2) if t is odd.

f(u3tu3t+1) =

{

f(v3t−1u3t−1) if t is even;

f(v3t−2v3t−1) if t is odd.

f(v3t+1u3t+1) =

{

f(u3t−2v3t−2) if t is even, t 6= 2;

f(u3t−1v3t−1) if t is odd.

Note, for t = 2 in the last case above, f(v7u7) = 3 is fixed as discussed at the

beginning of the proof.

For t = 2k +1, let f(v6k+3v6k+4) = f(u6k+1v6k+1), f(v6k+3u6k+3) = f(u6k+1u6k+2),

f(u6k+3u6k+4) = f(v6k+1v6k+2), and f(v6k+4u6k+4) = f(u6k+2v6k+2).

Again, by Lemma 3, the colors for the remaining edges are fixed. It is not hard to

see that f is a strong 6-edge-coloring for G2,3?(2k+1),2. See Figure 10 for an example.
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6 1 4 2 5 3

Figure 10: A strong 6-edge-coloring for G2,3,3,3,2.

Now consider m = 2. Because χ′
s(G3,1) = χ′

s(G4) > 6, Corollary 5 implies that

χ′
s(G3,3) > 6, so χ′

s(G3,3) = 7.
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For m = 4, since χ′
s(G2,2) > 6, by Corollary 5, we get χ′

s(G4,4) = χ′
s(G1,3,3,1) > 6.

Use Corollary 5 twice again, we obtain χ′
s(G3,3,3,3) > 6, so χ′

s(G3,3,3,3) = 7.

For m = 5, by Theorem 10 (a), χ′
s(G2,3,1,1) = χ′

s(G2,3,2) = 7. This implies, by

Corollary 5, χ′
s(G4,3,4) = χ′

s(G1,3,3,3,1) = χ′
s(G3?5) = 7.

Acknowledgments. The authors thank the referees for their prompt reports with

many constructive suggestions.

References

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10,

Discrete Math. 108 (1992) 231 – 252.

[2] R. A. Brualdi and J. Q. Massey, Incidence and strong edge colorings of graphs,

Discrete Math. 122 (1993) 51 – 58.

[3] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1989) 97 – 102.

[4] D. Cranston, Strong edge-coloring graphs with maximum degree 4 using 22 col-

ors, Discrerte Math. 306 (2006) 2772 – 2778.

[5] P. Erdős, Problems and results in combinatorial analysis and graph theory, Dis-

crete Math. 72 (1988) 81 – 92.
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[7] R. J. Faudree, R. H. Schelp, A. Gyárfás and Zs. Tuza, The strong chromatic

index of graphs, Ars Combin. 29B (1990) 205 – 211.

[8] J. L. Fouquet and J. Jolivet, Strong edge-coloring of graphs and applications to

multi-k-gons, Ars Combin. 16A (1983) 141 – 150.

[9] J. L. Fouquet and J. Jolivet, Strong edge-coloring of cubic planar graphs, Progress

in Graph Theory (Waterloo 1982), 1984, 247 – 264.

[10] M. C. Golumbic and M. Lewenstein, New results on induced matchings, Discrete

Appl. Math. 101 (2000) 157 – 165.

14



[11] P. Horák, The strong chromatic index of graphs with maximun degree four,

Contemp. Methods Graph Theory, 1990, 399 – 403.

[12] P. Horák, H. Qing and W. T. Trotter, Induced matchings in cubic graphs, J.

Graph Theory 17 (1993) 151 – 160.

[13] H.-H. Lai, K.-W. Lih and P.-Y. Tsai, The strong chromatic index of Halin graphs,

Discrete Math. (2011), doi:10.1016/j.disc.2011.09.016.

[14] K.-W. Lih and D. D.-F. Liu, On the strong chromatic index of cubic Halin graphs,

Appl. Math. Lett. (2011), doi:10.1016/j.aml.2011.10.046.

[15] M. Mahdian, On the computational complexity of strong edge coloring, Discrete

Appl. Math. 118 (2002) 239 – 248.

[16] M. Maydanskiy, The incidence coloring cofor graphs of maximum degree 3, Dis-

crete Math. 292 (2005) 131 – 141.

[17] M. R. Salavatipour, A polynomial time algorithm for strong edge coloring of

partial k-trees, Discrete Appl. Math. 143 (2004) 285 – 291.

[18] W. C. Shiu, P. C. B. Lam and W. K. Tam, On strong chromatic index of Halin

graphs, J. Combin. Math. Combin. Comput. 57 (2006) 211 – 222.

[19] W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin

graphs, Appl. Math. Lett. 22 (2009) 754 – 758.

[20] J. Wu and W. Lin, The strong chromatic index of a class of graphs, Discrete

Math. 308 (2008) 6254 – 6262.

15


