

Topic 1 - What is a
differential equation?
Ex:
$$y' = 3y$$

To solve this differential
equation we want a function
 y where $y' = 3y$.
Let's try $y = e^{3x}$
We get $y' = 3e^{3x}$
Notice that here $y' = 3y$.
So, $y = e^{3x}$ solves $y' = 3y$.

Def: An equation relating an unknown Function and one or more of its derivatives is called a differential equation. • If a differential equation only has regular derivatives of a single function then its called an <u>ordinary</u> differential <u>equation</u> (ODE). If it has partial derivatives then its called a partial differential equation (PDE). • The <u>order</u> of a differential equation is the order of

the highest derivative that occurs in the equation y' = 3yEx: of order 1 ODE $\frac{dy}{dx} + \frac{dy}{dx} - 5y = 2$ EX: y'' + y' - 5y = 2ODE of order 2

 $\underline{Ex:} \quad y'' + 2x^3y' = \sin(x)$ unknown Function y is the y = y(x) is a function of xX is a number ODE of order 2 EX: (Laplace equation) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ Here u = u(x,y) is a function of x and y.

PDE of order 2

Def: An ODE is called linear if it is of the form $a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$ (these terms only have x's and #'s in them) _χ: 2xy''-5y'+xy=cos(x)#'s and x's

ODE of order 3 linear

We have

$$y = sin(x) \leftarrow$$

 $y' = cos(x)$
 $y'' = -sin(x) \leftarrow$
So, $y'' = -y \leftarrow$
Thus, $y = sin(x)$ solves
 $y'' = -y$ on $I = (-\infty, \infty)$.