Math 2150-01 1/29/25

(Topic 1 continued...) Ex: Let's find a solution to the initial-value problem $y' = y^{2}$ y(0) = 1 y(0) = 1A condition on solut condition on solution Consider f(x) = $f(x) = (1-x)^{-1}$ Theni $f'(x) = -(|-x) \cdot (-|)$ $= (|-x|)^{-2} = \frac{1}{(|-x|)^{2}}$

Then,

$$f'(x) = \frac{1}{(1-x)^2} = \left[\frac{1}{(-x)}\right]^2 = \left[f(x)\right]^2$$
So,

$$f(x) = \frac{1}{1-x} \text{ satisfies } y' = y^2,$$
Also,

$$f(x) = \frac{1}{1-x} = 1 \quad \text{checking:} \quad y(x) = 1$$
So,
$$f \text{ satisfies the problem}$$
Yun could say

$$f \text{ solves the} \quad (0,1) \quad 1 \quad y = \frac{1}{1-x}$$
on
$$I = (-\infty, 1) \quad I \quad 1$$

HW 1

$$Z(d,e)$$

 $Z(d)$ Given any constants
 C_1 and C_2 show that
 $f(x) = c_1 e^{2x} + c_2 e^{-2x}$
Satisfies
 $y'' - 4y = 0$
 $On I = (-\infty, \infty)$

$$E_{x_{1}} c_{1} = 5, c_{2} = -3$$

$$f(x) = 5e^{2x} - 3e^{-2x}$$

 $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ these exist $f'(x) = Zc_1 e^{2x} - Zc_2 e^{-2x}$ for AILX $f''(x) = 4c_1e^{2x} + 4c_2e^{-2x}$ that is T = (-10).00I=(-10,10) Plug in y''=f'' and y=f to get: $y' - 4y = (4c_1e^{2x} + 4c_2e^{-2x})$ $-4(c_1e^{2x}+c_2e^{-2x})$ = 0So, f satisfies y''-4y=0 $On I = (-\infty, \infty),$ END 2(d)

Z(e) Find
$$c_{1,c_2}$$
 where
 $f(x) = c_1 e^{2x} + c_2 e^{-2x}$
Solves the initial-value problem
 $y'' - 4y = 0$
 $y'(0) = 0$
 $y(0) = 1$
 $y(0) = 1$

We already know from 2(d) that $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ solves y'' - 4y = 0. Let's make it solve the extra conditions, We have

$$f(x) = c_{1}e^{2x} + c_{2}e^{-2x}$$

$$f'(x) = 2c_{1}e^{2x} - 2c_{2}e^{-2x}$$
We need:

$$c_{1}e^{-2(0)} + c_{2}e^{-2(0)} = 1$$

$$2c_{1}e^{2(0)} - 2c_{2}e^{-2(0)} = 0$$

$$e^{2} = 1$$

$$c_{1} + c_{2} = 0$$

$$e^{2} = 1$$

$$c_{1} + c_{2} = 0$$

$$(2)$$

(2) gives $C_1 = C_2$. Plug $C_1 = C_2$ into (1) to get $C_2 + C_2 = 1$. So, $C_2 = \frac{1}{2}$.

Plug back into ci=c2 to $get C_1 = \frac{1}{2}$ also. $f(x) = c_1 e^{2x} + c_2 e^{-2x}$ Su, $= \frac{1}{2}e^{2x} + \frac{1}{2}e^{-2x}$ is the solution. END OF 2(e) SKIPPING

TOPIC 2

Topic 3- First order
linear ODEs
We will give a method
to solve

$$y' + a(x)y = b(x)$$

On any interval I
where $a(x), b(x)$
are continuous.
Since $a(x)$ is
continuous we can
Find an antiderivative
 $A(x) = \int a(x) dx$
So, $A'(x) = a(x)$

Multiply
$$y'+a(x)y=b(x)$$

by $e^{A(x)}$ to $yet:$
 $A(x) + e^{A(x)}a(x)y = b(x)e^{A(x)}$
 $(e^{A(x)}, y)' + (e^{A(x)}) +$

Solve for y: $M = e^{-A(x)} \int b(x) e^{A(x)} dx$ $\frac{1}{2}e^{x}e^{x^{2}}+Ce^{x^{2}}$ \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} \overrightarrow{P} Since you can reverse the $\frac{1}{2} + Ce^{-x^2}$ above steps this is the Only solution to the ODE.