Math 2150-01 2/12/25

(topic 5 continued...) Last time we saw that $2xy + (x^{2} - 1)y' = 0$ M(x,y) N(x,y) is exact. We saw that a solution is given by xy-y Where $f(x,y) = x^2y - y$. How did I find such an f? Pretend like we don't know f. We need f where $\frac{\partial f}{\partial x} = Z \times y \quad (f)$ $\frac{\partial f}{\partial y} = x^2 - 1 \quad (2)$ $\frac{\partial f}{\partial x} = M(x,y)$ $\frac{\partial f}{\partial y} = N(x,y)$

Start with D: $\frac{\partial f}{\partial x} = 2xy$ Integrate with respect to x: $f(x,y) = x^2y + C(y)$ Constant with tt's and y's but no x's Ne want to plug this into 2 First take the y derivative. We get $\frac{\partial f}{\partial y} = \chi^2 + C'(y)$ Mug this into the left side uf (Z) and get:

 $\frac{2}{2} = x^2 - 1$ $x^{2} + C'(y) = x^{-1}$ $S_{0,c'(y)} = -1$ C(y) = -y + DThus, Where Dis a constant. Thus, $F(x,y) = x^{2}y + c(y)$ $= \chi^2 y - y + D$ You can just set D=0 because the solution is f(x,y)=c So it would be xy-y+D=C So, solution is xy-y=c-D another constant

So use
$$f(x,y) = x^2y - y$$

HW 5 Z(b)
Consider the initial value problem
$$(e^{x}+y)+(z+x+ye^{y})y'=0$$

 $y(o)=1$

Let's first solve

$$(e^{x}+y)+(z+x+ye^{y})y=0$$

 $M(x,y)$

We have x M(x,y) = e + ythese N(x,y) = 2 + x + yeare snortual $\frac{9 \times 6}{9 \times 10^{-10}} = 1$ $\frac{\partial M}{\partial x} = e^{x}$ everywhere $\frac{\partial N}{\partial y} = 1 \cdot e + y \cdot e^{y}$ 34 = Check: $\left(\frac{\partial N}{\partial X} = 1 = \frac{\partial M}{\partial y}\right)$ So, the ODE equation is exact. Thus, the equation $(e^{x}+y)+(2+x+ye^{y})y=0$ is exact. So there must exist

$$f(x,y) + hat satisfies;$$

$$\frac{\partial f}{\partial x} = e^{x} + y$$

$$\frac{\partial f}{\partial x} = Z + x + ye^{y}$$

$$(i) = \frac{\partial f}{\partial x} = M(x,y)$$

$$\frac{\partial f}{\partial y} = N(x,y)$$

$$(i) = \frac{\partial f}{\partial x} = M(x,y)$$

Start with
$$0$$
:
 $\frac{\partial f}{\partial x} = e^{x} + y$
Integrate with respect to x:
 $f(x,y) = e^{x} + yx + C(y)$
 $f(x,y) = e^{x} + e^{x} + C(y)$
 $f(x,y) = e^{x} + e^{x$

$$x + c'(y) = 2 + x + ye^{y}$$
So,

$$c'(y) = 2 + ye^{y}$$
Thus,

$$c(y) = \int (2 + ye^{y}) dy$$

$$= 2y + \int ye^{y} dy$$
LIATE

$$\int u dv = uv - \int v du$$

$$u = y \quad du = dy$$

$$dv = e^{y} \quad v = e^{y}$$

$$= 2y + \left(ye^{y} - \int e^{z} dy\right)$$

$$= 2y + ye^{y} - e^{y}$$
(We don't need + constant here since
we set $f(x,y) = constant$ in answer)

So,

$$f(x,y) = e^{x} + yx + c(y)$$

 $= e^{x} + yx + 2y + ye^{y} - e^{y}$
 $C(y)$
A solution to
 $(e^{x} + y) + (2 + x + ye^{y})y' = 0$
is
 $e^{x} + yx + 2y + ye^{y} - e^{y} = c$
where c is a constant.
Now let's find a
solution where $y(0) = 1$.
Plug $x = 0, y = 1$ into our solution.
We get:
 $e^{x} + (1)(0) + 2(1) + (1)e^{y} - e^{y} = c$

 $\int 0, c = 3.$ Answer to initial value problem is: e^{x} + y × + 2 y + y e^{y} = 3

Method Z to solve: $\frac{\partial f}{\partial x} = e^{x} + y \qquad (1)$ $\frac{\partial f}{\partial y} = 2 + x + y e^{y} \qquad (2)$ (): $f(x,y) = e^{x} + yx + C(y)$ (z): $f(x,y) = Zy + xy + ye^{-}e^{+}D(x)$ Set equal: $e^{x}+yx+c(y)=zy+xy+ye-e^{2}+D(x)$ Simplify: $e^{x} + c(y) = 2y + ye^{y} - e^{y} + D(x)$ ______

Plug C(y) into (i) eqn: $f(x,y) = e^{x} + y \times + c(y)$ $= e^{x} + y \times + zy + ye^{y} - e^{y}$