Math 2150-01 2/17/25

Ex: Last time we looked $2xy + (x^{2} - 1)y' = 0$ $\alpha +$ To solve it we need to find f(x,y) where $\frac{\partial f}{\partial x} = 2xy$ $\frac{\partial f}{\partial y} = \chi^2 - 1 \qquad (2)$ Let's see how to solve this with our second method. Integrate () with respect to X: constant with respect $f(x,y) = x^2y + \underbrace{c(y)}_{x}$ Integrate (2) with respect to y:

Set 3 equal to (4); $X y + C(y) = X^2 y - y + D(x)$ Simplify: C(y) = -y + D(x)Set C(y) = -y and D(x) = 0. Plug either into 3 or @ to find f. Let's plug ((y) = - y into (3) to get $f(x,y) = x^2y + c(y)$ $= \chi' \gamma - \gamma$ This is the answer we got last time

Topic 6- Theory of second
order linear ODEs
So fur we've been solving
first order equations.
Now we switch to second
order. We will look at these:
$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$$

(2nd order linear)
To do this we need
some preliminaries.

Def: Let I be an interval. Let f, and fz be defined on I. We say that f, and fz are linearly dependent if either $(f_1(x) = cf_2(x)$ for all x in I $\Im f_2(x) = cf_1(x)$ for all x in I 0 (Where c is a constant. If no such c exists then fi, fz are called linearly independent.

 E_X : Let $T = (-\infty, \infty)$. Let $f_1(x) = x^2$ and $f_2(x) = 7x^2$. f, and fz $\int f_1(x) = x^2$ are linearly dependent because for example $f_1(x) = \frac{1}{2}f_2(x)$ $f_2(x) = 7x^2$ for all x in I. Or you could Say $f_2(x) = 7f_1(x)$ for all x in I

$$\frac{E_{x}}{Le+} = (-\infty,\infty).$$
Let $f_1(x) = x^2$ and $f_2(x) = x^3$.
These functions are linearly
independent. Why?

$$\int f_1(x) = x^2$$

$$f_2(x) = x^3$$

Suppose $f_1(x) = c f_2(x)$ for all x in I. Then $x^2 = c x^3$ for all X. Plug in x = 1 to get 1 = c. Plug in x = 2 to get $\frac{1}{2} = c$ This is honsense!

We will learn another way to check this based on the Wronskian. Josef Wronski (1778-1853)

Theorem: Let I be an interval.
Let
$$f_{i}, f_{2}$$
 be differentiable un I.
If the Wronskian
 $W(f_{i}, f_{2}) = \begin{vmatrix} f_{i} & f_{2} \\ f_{i}' & f_{2}' \end{vmatrix} = f_{i}f_{2}' - f_{z}f_{i}'$
notation
notation
for determinant
 $f_{i}' & f_{2}' \end{vmatrix}$
is not the zero function,
then f_{i} and f_{z} are linearly
independent.
That is, if there
exists an χ_{0} in I
with $W(f_{i}, f_{z})(\chi_{0}) \neq 0$
then f_{i}, f_{z} are
linearly independent
 χ_{0}

Ex: Let $I = (-\infty, \infty)$ and $f_1(x) = e^{2x}, f_2(x) = e^{5x}$ Let's show these functions are linearly independent. $W(f_{1},f_{2}) = \begin{bmatrix} f_{1} & f_{2} \\ f_{1}' & f_{2}' \end{bmatrix}$ $= \begin{vmatrix} 2x & 5x \\ e & e \\ 2x & 5x \\ 2e & 5e^{x} \end{vmatrix}$ $= \left(\frac{2^{\times}}{e}\right)\left(5\frac{5^{\times}}{e}\right) - \left(2\frac{2^{\times}}{e}\right)\left(\frac{5^{\times}}{e}\right)$ $=5e^{7\times}-2e^{7\times}$ $= 3e^{7x} \leftarrow is this$ the zerofunction?

Plug in X = 0to get $3e^{7(0)} = 3 \neq 0$ 3 / $3e^{7\times}$ X = 0 Since the Wronskian is not the zero Function, f, and fz are linearly independent.

Theorem: Let I be an interval. Let $a_2(x)$, $a_1(x)$, $a_0(x)$ be continuous on I and $Q_2(x) \neq 0$ for all x in T. Consider the homogeneous equation $G_2(x)y'' + G_1(x)y' + G_0(x)y = 0$ (4) If f, and fz homogeneous when this is o are two linearly

independent solutions to
$$(+)$$
,
then every solution is of
the form
 $y_h = c_1 f_1(x) + c_2 f_2(x)$
 h for homogeneous
where c_1, c_2 are constants.