Math 2150-02 2/10/25

Topic 5 - First order exact equations

Suppose you have a first order equation of the form: $M(x,y) + N(x,y) \cdot y' = 0$ expressions with x's & y's Ex; $2 \times y + (x^{2} - 1) y' = 0$ N(x,y)M(x,y)

Further suppose there exists
a function
$$f(x,y)$$
 where

$$\frac{\partial f}{\partial x} = M(x,y) \text{ and } \frac{\partial f}{\partial y} = N(x,y)$$
Ex:

$$2xy + (x^{2}-1), y' = 0$$

$$M(x,y) \quad N(x,y)$$

$$f(x,y) = x^{2}y - y$$

$$\frac{\partial f}{\partial x} = Zxy + 0 = 2xy = [M(x,y)]$$

$$\frac{\partial f}{\partial x} = x^{2} - 1 = N(x,y)$$

Suppose
$$\frac{\partial f}{\partial x} = M(x,y), \frac{\partial f}{\partial y} = N(x,y).$$

Then,
 $M(x,y) + N(x,y) \cdot y' = 0$
becomes
 $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0$
(MATH 2130)
 $f(x,y)$ is a function of x, y
 $y = y(x)$ is a function of x
chain rule:
 $\frac{df}{dx} = \frac{\partial f}{\partial x} \cdot \frac{d}{dx}(x) + \frac{\partial f}{\partial y} \cdot \frac{d}{dx}(y)$
 $= \frac{\partial f}{\partial x} \cdot (1) + \frac{\partial f}{\partial y} \frac{dy}{dx}$
 $= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$

 $S_{0}, \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dx} = 0$ becomes $\frac{df}{dx} = 0$. family of So for example the where curves f(x,y) = cc is a constant will satisfy $\frac{df}{dx} = 0$. Summary: If $\frac{\partial f}{\partial x} = M(x,y)$ and $\frac{\partial f}{\partial y} = N(x,y)$, then the family OF CUIVES F(X,y)=C where c is any constant will give an implicit solution to $M(x,y) + N(x,y) \cdot y' = 0$

When such an f exists we call the equation $M(x,y) + N(x,y) \cdot y' = 0$ an exact equation

Ex: Consider

$$Zxy + (x^{2}-1)y'=0$$

$$M(x,y) \quad N(x,y)$$
Let

$$f(x,y) = x^{2}y - y$$
Then

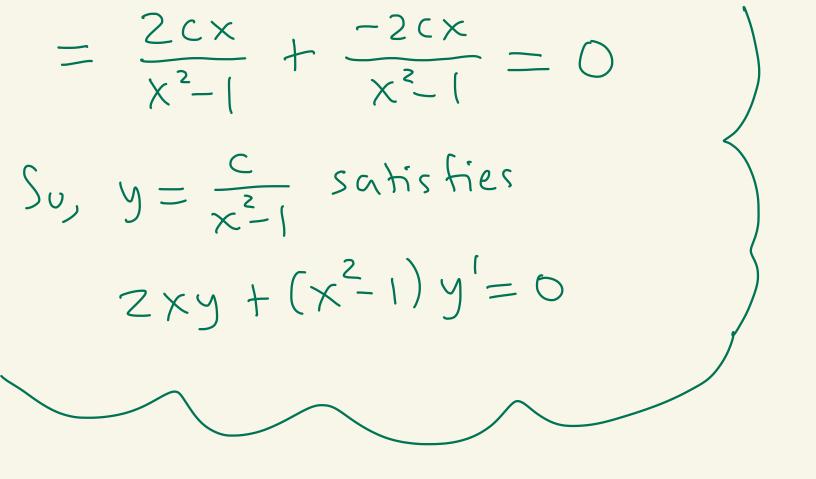
$$\frac{\partial f}{\partial x} = Zxy = M(x,y)$$

$$\frac{\partial f}{\partial y} = x^{2} - 1 = N(x,y)$$

So,
$$2xy + (x^2-1)y' = 0$$
 is exact
and a family of implicit
solutions is given by
 $x^2y - y = c$ $f(x,y) = c$
where c is any constant.
Check #1
Suppose $x^2y - y = c$.
Differentiate both sides with
respect to x to get:
 $2xy + x^2y' - y' = 0$
 $\frac{dy}{dx} = \frac{dy}{dx}$

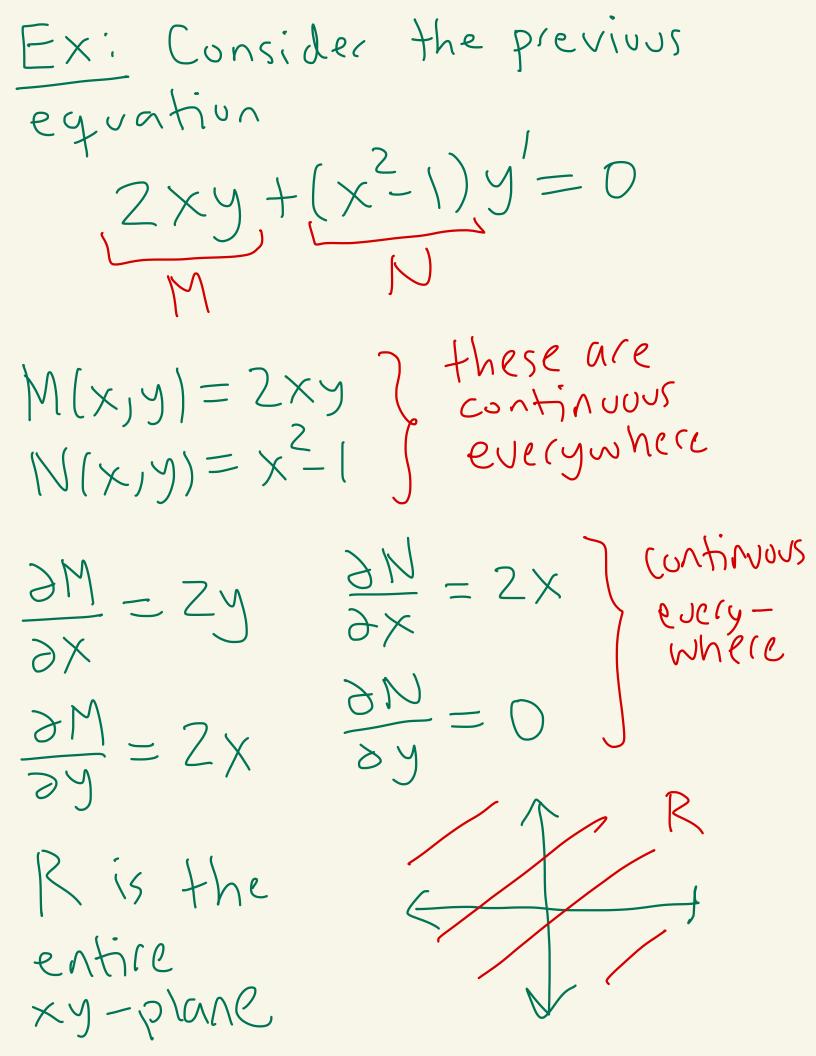
 $2xy+(x^{2}-1)y'=0$

Check#2 You can solve for y in our solution $x^2y - y = c$. $y = \frac{c}{x^2 - 1}$ Yun get: Does this satisfy our equation? $y = c(x^2 - 1)^{-1}$ $y' = -c(x^2 - 1)^{-2} \cdot (2x)$ $= \frac{-2cx}{(x^2-1)^2}$ Plug these in to get: $2xy + (x^2 - 1)y'$ $= 2 \times \left(\frac{c}{\chi^2 - 1}\right) + \left(\chi^2 - 1\right) \left(\frac{-2c \times}{(\chi^2 - 1)^2}\right)$



When does such an f exist? Theorem: Let M(x,y) and N(x,y) be continuous and have continuous first partial derivatives in some rectangle R defined by a<x<b and c < y < d. d T R Then, M(x,y) + N(x,y)y' = 0a b will be exact if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ Here a,b,c,d can be ± m

Proof: See onlines notes if interested



And, $\frac{\partial M}{\partial y} = 2x = \frac{\partial N}{\partial x}$ Thus, 2xy + (x - 1)y = 0is exact. That is, there Will exist f with $\partial f = M \& \partial f = N$