

Another method for topic 5 Let's resolue (from last time):  $\frac{\partial f}{\partial x} = e + y$  $\frac{\partial f}{\partial y} = 2 + \chi + y e^{y}$  (2) Integrate () with respect to x!  $f(x,y) = e^{x} + yx + C(y) \quad (3) \quad (constant with respect)$ Integrate (2) with respect to y?  $f(x,y) = Zy + Xy + \int ye^{y} dy + D(x)$ So, ye-e5 Constant  $f(x,y) = 2y + xy + ye^{y} - e^{y} + D(x)$ respect

Set 3 equal to 4 to get  $e^{+y} \times + c(y) = 2y + xy + ye^{-}e^{+}D(x)$ We get  $e^{x} + c(y) = Zy + ye^{y} - e^{y} + D(x)$ Set (y) = 2y+ye<sup>y</sup>-e<sup>y</sup>  $D(x) = e^{x}$ Plug into 3 or 9 to get f: Plug C(y) into 3:  $f(x,y) = e^{x} + y \times + c(y)$  $= e^{x} + yx + 2y + ye^{y} e^{y}$ 

I will post both methods in the HW solutions online

Def: Let I be an interval. Let f, and fz be defined on I. We say that f, and fz are linearly dependent if either (1)  $f_1(x) = cf_2(x)$  for all x in I for all x in I  $2f_{z}(x) = cf_{1}(x)$ 00 Here c is a constant. If no such constant exists then fifz are called linearly independent.

 $E_{X'}$ , Let  $f_i(x) = x_i$  $f_2(x) = 3x^2$ ,  $T = (-\infty, \infty)$ . f, and fz  $f_{1}(x) = x^{2}$ are linearly dependent on I because  $f_z(x) = 3 \cdot f_1(x)$  $f_2(x) = 3x^2$ for all x in I. or because  $f_{1}(x) = \frac{1}{3}f_{2}(x)$ for all x in I

$$\frac{E_{X}}{Let} \quad Let \quad I = (-\infty, \infty),$$

$$\frac{E_{X}}{Let} \quad f_{1}(x) = e^{2x} \text{ and } f_{2}(x) = e^{5x}.$$

$$\frac{\int f_{1}(x) = e^{2x}}{f_{1}(x) = e^{2x}} \quad We \quad will \\ Show \quad f_{1} \quad and \\ f_{2} \quad are \\ Integrity \\ independent \\ on \quad I_{-}$$

$$Suppose \quad f_{1}(x) = c \quad f_{2}(x) \quad for \\ all \quad x \quad in \quad I_{-}$$

$$Then, \quad e^{2x} = c \quad e^{5x} \quad for \quad all \quad x, \\ x = 0 \quad would \quad give \quad l = c$$

X=1 would give 
$$e^{2} = ce^{5}$$
  
That gives  $c = e^{3}$   
Then  $1 = c = e^{-3}$  which is  
Nonsense!  
Nonsense!  
Similary there's no way to  
have  $f_{2}(x) = cf_{1}(x)$ .  
 $f_{1}$  and  $f_{2}$  are linearly  
independent

Theorem: Let I be an interval.  
Let 
$$f_{ij}f_{2}$$
 be differentiable on I.  
If the Wronskian  
 $W(f_{ij}f_{2}) = \begin{vmatrix} f_{i} & f_{2} \\ f_{i}' & f_{2}' \end{vmatrix} = f_{i}f_{2}' - f_{2}f_{1}'$   
 $F_{i}' & f_{2}' \end{vmatrix}$   
is not the zero function  
on I, then  $f_{ij}f_{2}$  are linearly  
independent.  
That is, if there  
 $e xists X_{0}$  in I  
where  $W(f_{ij}f_{2})(X_{0}) \neq 0$   
then  $f_{ij}f_{2}$  are linearly  
independent  $X_{0}$ 

Xo

 $\mathsf{E}_{X'}, \mathsf{Le}_{\mathsf{T}} = (-\infty, \infty),$  $f_1(x) = e^{2x}, f_2(x) = e^{5x}$ Let's vie the Wronskian to Show that fifz are linearly independent. We have  $W(f_{1}, f_{2}) = \begin{cases} f_{1}, f_{2} \\ f_{1}', f_{2}' \end{cases}$  $= \begin{vmatrix} 2x & 5x \\ e & e \\ 2x & 2x \\ 2e & 5e^{5x} \end{vmatrix}$  $= \left( \begin{array}{c} 2 \times \\ e \end{array} \right) \left( 5 \begin{array}{c} 5 \times \\ e \end{array} \right) - \left( \begin{array}{c} 2 \times \\ 2 \end{array} \right) \left( \begin{array}{c} 5 \times \\ e \end{array} \right)$  $= 5e^{7x} - 2e^{7x}$ 



Iheorem: Let I be an interval. Let  $a_2(x)$ ,  $a_1(x)$ ,  $a_0(x)$  be (ontinuous on I. Suppose  $a_2(x) \neq 0$  on I. Consider the homogeneous equation  $a_{2}(x)y'' + a_{1}(x)y' + a_{0}(x)y = 0$  (\*) homogeneous When this is o If  $f_1(x)$  and  $f_2(x)$ are linearly independent on I and they both are solutions to (+) on I, then every solution to (\*) un I is of the form  $\mathcal{Y}_{h} = c_{1}f_{1}(x) + c_{2}f_{2}(x)$ where c., Cz are constants.