$Math 2150$ $9/16/24$

Tupic 6 - Theory of second order linear ODES

Up to this point we've been learning techniques to solve first order ODEs (linear, separable , exact) . There's ^a bunch more $int_{m e} H_{n o} ds$ if you look in books , Now we will look at second order equations Now we
second order equat
but only linear ones.

We will consider second order linear ODEs of the form : $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$ where $a_2(x)$, $a_{1}(x)$, $a_{0}(x)$, $b(x)$ are continuous on some where $a_2(x)$, c
are continuou!
interval I. For now we will assume
For now we will assume interval I.

For now we will assume
 $a_2(x) \neq 0$ for all x in I.
 $a_3(x) \neq 0$ for all x it out divide it out Then we can divide "i
We coefficient Then we can
and make the y $a_2(x) \neq 0$
Then we can
and make t
equal to 1. m +.
will also consider initial We conditions $y'(x_0) = y'_0$ and $y(x_0) = y_0$ Ne will also
Conditions
 $y'(x_0) = y_0'$ and $y(x_0)$
at some point x_0 in \pm .

$$
y'(x_{o}) = y_{o}^{\prime\prime}
$$

derivative
q
prime not derivative

$$
\frac{Ex: \text{Consider}}{y'' - 7y' + 10y} = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
1e^{x} = (-\infty, \infty).
$$
\nLet\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{x}
$$
\nwhere c_1, c_2 are constants.
\n
$$
f(x) = 1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$
\n
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^{2x}
$$

 $100E$ $\overline{}$ \mathbf{I} Let's show that I solves

the ODE. We have $f(x) = c_1 e^{2x} + c_2 e^{5x} + 6e^{x}$ $f'(x) = 2c_1e^{2x} + 5c_2e^{5x} + 6e^{x}$ $f''(x) = 4c_1e^{2x} + 25c_2e^{5x} + 6e^{x}$ Plug f into the left-side of the ODE to get: $y'' - 7y' + 10y$ $= f'' - 7f' + 10f$ = $(4c_1e^{2x}+25c_2e^{5x}+6e^{x})$ $-7(2c_1e^{2x}+5c_2e^{5x}+6e^x)$ $+10$ (c₁e^{2x}+c₂e^{5x} + 6e^x)

$$
= 4c_1e^{2x} + 25c_2e^{5x} + 6e^{x}
$$

-14c_1e^{2x} - 35c_2e^{5x} - 42e^{x}
+10c_1e^{2x} + 10c_2e^{5x} + 60e^{x}

 $=24e^{x}$

$$
S_{0} f(x) = c_{1}e^{2x} + c_{2}e^{5x} + 6e^{x}
$$

solves $y'' - 7y' + 6y = 24e^{x}$
on $\mathcal{I} = (-\infty, \infty)$.

$$
E_x: Use the above to solve
$$

\n
$$
y'' - 7y' + 10y = 24e^x
$$

\n
$$
y'(0) = 6, y(0) = 0
$$

\n
$$
y(0) = 0
$$

\n
$$
y(0) = 0
$$

We know
$$
f(x) = c_1e^{2x} + c_2e^{5x} + 6e^{x}
$$

\nSolve $y'' - \frac{7y' + 10y}{2!} = 24e^{x}$.
\nLet f se if we can make
\nit solve $(\frac{y'(0) = b}{2!} - \frac{3x}{2!} + 5c_2e^{x})$
\nRecall $f'(x) = 2c_1e^{2x} + 5c_2e^{x} + 6e^{x}$
\n
\n**W**an+
\n $f'(0) = 6$

This is

 $C_1e^{z(0)}+C_2e^{s(0)}+6e^{z(0)}$
 $2C_1e^{z(0)}+5C_2e^{s(0)}+6e^{0}=6$

$$
C_1 + C_2 = -6
$$

2C_1 + 5C_2 = 0

1) gives
$$
c_1 = -6 - c_2
$$

\n
$$
P|_{U_9} \text{ into } \textcircled{3} + 9e +
$$
\n
$$
2(-6 - c_2) + 5c_2 = 0
$$
\n
$$
Giving \quad G_1
$$
\n
$$
3c_2 = 12
$$
\n
$$
50, C_2 = 4.
$$
\n
$$
An\delta, C_1 = -6 - c_2 = -6 - 4 = -10.
$$
\n
$$
Thus, C_1 = -10e^{2x} + 4e^{5x} + 6e^{x}
$$
\n
$$
f(x) = -10e^{2x} + 4e^{5x} + 6e^{x}
$$

$$
S_{o}(ues - 7y' + 10y = 24e^{x})
$$

$$
y'' - 7y' + 10y = 24e^{x}
$$

$$
y'(o) = 6, y(o) = 0
$$

Theorem I be an interval. $e +$ Let $a_{2}(x), a_{1}(x), a_{0}(x), b(x)$ and be continuous on $a_2(x) \neq 0$ for all x in I. Let Xo be in I. Then, $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$ $y'(x_{0}) = y_{0}'$, $y(x_{0}) = y_{0}$

Ex:	Consider
$x^2 y'' - 4xy' + 6y = \frac{1}{x}$	
$y'(1) = \frac{13}{12} y(1) = \frac{23}{12}$	
On $I = (0, \infty)$ $\frac{4}{12}$	
Theorem says, this has a unique solution. In HW 16	
$ynique solution$, $Int's$ 17	
$y = x^2 + \frac{1}{12x}$	

Left: Let
$$
\pm
$$
 be an interval.

\nLeft: f_1, f_2 be functions

\ndefined on \pm .

\nWe say that f_1, f_2 are linearly dependent on \pm if one of

\nthen is a multiple of the

\nother on \pm . That is, if

\neither on \pm . That is, if

\neither $f_2(x) = c f_1(x)$ for all x in \pm

\nor $f_1(x) = c f_2(x)$ for all x in \pm

\nwhere c is a constant.

\nIf they are called

\n \pm the system't linearly dependent, they are called

\n \pm independent.

 $\exists x: \text{left } f_1(x) = x^2$ $und f_{2}(x) = 10x^{2}$ $I = (-\omega, \omega)$ $Le+$ $f, and f₂$ $\int f(x) = x^2$ are linearly dependent $0n$ I because $f(x) = 10f(x)$ $f(x) = 10x^2$ For all x in I.