$Math 2150$
9/18/24

which gives
$$
e^{-3} = c
$$
.
\nBut then $1 = c = e^{-3}$
\n ≈ 0.049787 ...
\n πi can't happen!
\nSimilarly, you can show that
\nthree is no c where
\n $f_2(x) = c \int_1^{\pi} (x) \text{ on } T$.
\n πi (x) = e^{2x} and $f_2(x) = e^{5x}$
\nare linearly independent on T.
\nWe will now learn another
\nway to check for linear
\nindependence on T.

It's a method named after Josef Wronski (1778- $1853)$

Def: Let f, and t₂ be differentiable un an interval I. The Wronskian of fr and f_2 is the following determinant

$$
W(f_1, f_2) = \begin{bmatrix} f_1 & f_2 \\ f_1' & f_2' \end{bmatrix} = f_1 f_2' - f_2 f_1'
$$

+his is called
a determinant

$$
\frac{\text{picture:}}{\text{Ex: }} \frac{\text{picture:}}{\text{f}_{1}} \times \frac{\text{f}_{2}}{\text{f}_{2}} = \frac{2 \times 1}{2^{2} \times 1} \times \frac{1}{2^{2} \times 2^{2}} = \frac{2 \times 1}{2^{2} \times 1} \times \frac{5 \times 1}{2^{2} \times 2^{2} \times 2^{
$$

 $=5e^{2x+5x}-2e^{5x+2x}$
= 3 e^{7x}

Theorem: Let I be an
interval. Let f, f_z be
differentiable on I.
If the Wronskian W(f₁₎f₂)
is not the zero function Theorem:
interval. : Let I be an interval. Let f₁, f₂ be heorem: Let I br
interval. Let f₁₂
differentiable on I. differentiable on I.
If the Wronskian W(f_{1J}f₂) $If the Wions
is not the zero$ function ins not
 J
 J then fi , fe are linearly independent on I . ..
个 That is, if there $rac{1}{2}$ are
 $+$ on $\frac{1}{2}$
 $+$ on $\frac{1}{2}$
 $+$ $\frac{1}{2}$
 $\frac{1}{2}$ zero exists some point function That is, if there
exists some point
 x_{0} in I where $W(f_{1},f_{2})(x_{0})\neq0$ then f_1, f_2 are $\begin{matrix} f_1, f_2, f_3, f_4, f_5 \end{matrix}$ independent.

 $Lx: Lefsshvw f(x) = e^{2x}$ and $f_2(x) = e^{5x}$ are linearly $iodependen+ on \mathbb{I}=(-\infty,\infty)$ Using the Wronskiun. We saw $W(f_{ij}f_{2}) = 3e^{7x}$ $W(f_{ij}f_{L})$ Zero function $3 = W(f_1, f_2)(0)$ The Wronskian W $(f_1,f_2)=3e^{7x}$ is not the zero function on I. For example at $x_0 = 0$ we get $W(f_1, f_2)(0) = 3e^{f(0)} = 3 \cdot e^{0} = 3 \neq 0$ Thus, f,, f, are lin. ind. on I.

Theorem [linear, homogeneous, 2nd order]
\nLet
$$
\pm
$$
 be an interval.
\nLet $a_2(x), a_1(x), a_0(x)$ be
\ncontinuous on \pm . Suppose
\n $a_2(x) \neq 0$ for all x in \pm .
\nConsider the homogeneous equation
\n
$$
a_2(x) y'' + a_1(x) y' + a_2(x) y = O
$$
\n
$$
a_1(x) y'' + a_1(x) y' + a_2(x) y = O
$$
\n
$$
f_1(x) and f_2(x) are\nlinearly independent on \pm ,
\nand $f_1(x)$ and $f_2(x)$ be the
\nsoive $(*)$
\nThen every solution to $(*)$
\non \pm is of the form
$$

 $y_h = c_1 f_1(x) + c_2 f_2(x)$
where c_1, c_2 are constants. -generous XXXXXX Ex: Consider the homogeneous 2nd order linear ODE $y'' - 7y' + 10y = 0$ on $I=(-\infty,\infty)$. Let $f(x) = e^{2x}$ and $f_{2}(x) = e^{5x}$ We know that f, and fz are linearly independent on I.

Let's show they both solve
\n
$$
y'' - 7y' + 10y = 0
$$

\nby plugging them in.
\nWe have:
\n $f_1(x) = e^{2x}$
\n $f_2(x) = e^{5x}$
\n $f_1'(x) = 2e^{2x}$
\n $f_2'(x) = 5e^{5x}$
\n $f_1''(x) = 4e^{2x}$
\n $f_2''(x) = 25e^{5x}$

Thus, $f'' - 7f' + 10f'$ $= 4e^{2x} - 7(2e^{2x}) + 10(e^{2x})$ $=4e^{2x}-14e^{2x}+10e^{2x}$ $=$ \bigcirc S_0 , f_1 , S_0 lues $y'' - 7y' + 10y = 0$ $0₀$

Also,
\n
$$
\begin{aligned}\n\int_{2}^{1} (-7 + \frac{1}{2}) + 10\frac{1}{2}x \\
&= 25e^{5x} - 7(5e^{5x}) + 10e^{5x} \\
&= 25e^{5x} - 35e^{5x} + 10e^{5x} \\
&= 0 \\
S_{0} + \frac{1}{2} \text{ solves } y'' - 7y' + 10y = 0 \\
&= 0 \\
\end{aligned}
$$

Since
$$
f_1, f_2
$$
 are lin. ind. on I
and they both solve the
homogeneous equation we
 $Know any solution to $y'' - 7y' + 10y = 0$ is of $\sqrt{\frac{y_h}{m}}$
 $+he$ form
 $y_h = c_1 f_1 + c_2 f_2 = c_1 e_1 e_1 + c_2 e_2$$

Theorem: (General linear 2nd order)
\nLet
$$
\pm
$$
 be an interval. Let
\n $a_2(x), a_1(x), a_2(x), b(x)$ be
\ncontinuous on \pm and $a_2(x) \neq 0$
\nfor all x in \pm .
\nConsider
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\n• Suppose f , and f_2 are linearly
\nindependent on \pm and both
\nfor the homogeneous equation
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\n• Suppose y_2 is a particular
\nsoolution to
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\nsoolution to
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\non \pm
\nThen, every solution f

 $a_2(x) y'' + a_1(x) y' + a_0(x) y = b(x)$ on I is of the form $y = C_1 f_1(x) + C_2 f_2(x) + y_1(x)$ Where $c_{1,}c_{2}$ are constants. Ex: Consider $y'' - 7y' + 10y = 24e^{x}$ $\text{on } \mathcal{I} = (-\infty, \infty) \text{ .}$ We know $f(x) = e^{2x}$ and $f_z(x) = e^{sx}$ are lin. ind. Solutions to the homogeneous e quation $y'' - 7y' + 10y = 0$

on I. $A|s_0$ if $y_p = 6e^{x}$. Also II uparticular solution t_0 y" - 7 y' + 1 o y = 24 ex because y''_{p} + 7 y'_{p} + 10 y_{p} = $=6e^{x} - 7(6e^{x}) + 10(6e^{x})$ $= 24 e^{x}$ Thus, the theorem tells that s slution to y"-7y'tloy=24e $\overline{\mathsf{X}}$ every Thus, the theorem tells
every solution to y"-7y
on I is of the form
2x 5x $y = y_h + y_h =$ $7(6e^4) + 1$

theorem te

rish to y"

of the f
 $2x$ 5
 $C_1e + C_2e^5$

yh $c_1 e + c_2 e^{5x} + 6e^{x}$ $6e^x$ Yh Yp