Math 2150 9/18/24

which gives
$$e^{-3} = c$$
.
But then $l = c = e^{-3}$
 $\approx 0.049787...$
This can't happen!
Similarly you can show that
there is no c where
 $f_2(x) = c f_1(x)$ on I.
Thus, $f_1(x) = e^{2x}$ and $f_2(x) = e^{5x}$
are linearly independent on I.
We will now learn another
way to check for linear
independence on I.

It's a method named after Josef Wronski (1778-1853)

Def: Let f, and fz be differentiable un an interval I. The Wronskian of f. and fz is the following determinant

 $W(f_{1},f_{2}) = \begin{vmatrix} f_{1} & f_{2} \\ f_{1}' & f_{2}' \end{vmatrix} = f_{1}f_{2}' - f_{2}f_{1}'$ this is called a déterminant

$$\frac{\text{picture}:}{f_{1}^{\prime} + f_{2}^{\prime}}$$

$$\frac{f_{1}^{\prime} + f_{2}^{\prime}}{f_{1}^{\prime} + f_{2}^{\prime}}$$

$$\frac{E_{X}:}{f_{1}^{\prime} + f_{1}^{\prime}} = e^{2x}, \quad f_{2}^{\prime} + f$$

 $= 5e^{2x+5x} - 2e^{5x+2x}$ $= 3e^{7x}$

Theorem: Let I be an interval. Let fistz be differentiable on I. If the Wronskian $W(f_1, f_2)$ is not the zero function on I, then fifz are linearly independent on I. That is, if there That is, if there zero exists some point function x in I where Xo in I where linearly independent. $W(f_{1},f_{z})(x_{o})\neq 0$ then fi, fz are

 E_X : Let's show $f_1(x) = e^{2x}$ and $f_z(x) = e^{5x}$ are linearly independent on $I = (-\infty, \infty)$ Using the Wronskiun. We saw $W(f_1, f_2) = 3e^{7x}$. $M(f_1, f_2) = 3e^{7x}$. The Wronskian $W(f_1, f_2) = 3e^{7x}$ is not the zero function on I. For example at X. = 0 we get $W(f_{1}f_{2})(0) = 3e^{7(0)} = 3 \cdot e^{0} = 3 \cdot e^{0} = 3 = 0$ Thus, fi, fz are lin. ind. on I.

Theorem [linear, homogeneous, Znd order
DEF]
Let I be an interval.
Let
$$a_2(x)$$
, $a_1(x)$, $a_0(x)$ be
(ontinuous on I. Suppose
 $a_2(x) \neq 0$ for all x in I.
Consider the homogeneous equation
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$ (4)
Suppose
 $f_1(x)$ and $f_2(x)$ are
linearly independent on I,
and
 $f_1(x)$ and $f_2(x)$ both
 $solve(*)$
Then every solution to (*)
 $on I$ is of the form

 $y_h = c_1 f_1(x) + c_2 f_2(x) \in y_h$ where c_1, c_2 are constants. -geneous Ex: Consider the homogeneous 2nd order linear ODE y'' - 7y' + |0y = 0 $On \quad \mathbb{T} = (-\infty, \infty).$ Let $f_{1}(x) = e^{2x}$ and $f_2(x) = e^{5x}$ We know that f, and fz are linearly independent on I.

Let's show they both solve

$$y'' - 7y' + loy = 0$$

by plugging them in.
We have:
 $f_1(x) = e^{2x}$
 $f_2(x) = e^{5x}$
 $f_2(x) = 5e^{5x}$
 $f_1'(x) = 2e^{2x}$
 $f_2'(x) = 5e^{5x}$
 $f_2'(x) = 25e^{5x}$

Thus, $f_{1}'' - 7f_{1}' + |0f_{1}|$ $= 4e^{2x} - 7(2e^{2x}) + |0(e^{2x})|$ $= 4e^{2x} - 14e^{2x} + 10e^{2x}$ = 0So, f, solves $y_{1}'' - 7y_{1}' + 10y = 0$ = 0

Also,

$$f_{2}'' - 7f_{2}' + lof_{2}$$

 $= 25e^{5\times} - 7(5e^{5\times}) + loe^{5\times}$
 $= 25e^{5\times} - 35e^{5\times} + loe^{5\times}$
 $= 0$
So, f_{2} solves $y'' - 7y' + loy = 0$
 v_{1} I,

Since
$$f_{1}, f_{2}$$
 are lin, ind, on T
Und they both solve the
homogeneous equation we
Know any solution to
 $y'' - 7y' + 10y = 0$ is of y_{h}
the form
 $y_{h} = c_{1}f_{1} + c_{2}f_{2} = c_{1}e^{-1} + c_{2}e^{-1}$

Theorem: (General linear 2nd order)
Let I be an interval. Let

$$a_2(x), a_1(x), a_0(x), b(x)$$
 be
Continuous on I and $a_2(x) \neq 0$
for all x in I.
Consider
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
• Suppose f, and fz are linearly
independent on I and both
solve the homogeneous equation
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$
• Suppose y_p is a particular
solution to
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
on I:
Then, every solution to

 $a_2(x)y'' + a_1(x)y' + a_p(x)y = b(x)$ on I is of the form $y = c_1 f_1(x) + c_2 f_2(x) + y_p(x)$ y_h y_p where ci, c2 are constants. Ex: Consider $y'' - 7y' + 10y = 24e^{x}$ $U \cap I = (-\infty, \infty).$ We know $f_1(x) = e^{2x}$ and $f_z(x) = e^{5x}$ are lin. ind. Solutions to the homogeneous equation y'' - 7y' + 10y = 0

on I. Also if yp=6ex. This is a particular solution $t_{0}y''_{-}-7y'+(0y=24e')$ because $y''_{p} - 7y'_{p} + 10y_{p}$ $= 6e^{\times} - 7(6e^{\times}) + 10(6e^{\times})$ $= 24e^{\times}$ Thus, the theorem tells that every solution to y"-7y'+loy=28ex on I is of the form $y = y_h + y_p = c_1 e + c_2 e^{5x} + 6e^{x}$