$Math 2550 - 04$
 $10/21/24$

 $EX: In R³$ $|e +$ $\frac{\sum X:}{\sum A} = \langle -1, 0, 1 \rangle, \vec{b} = \langle -5, 0, 1 \rangle$ $-3, 2, 2, 2^{\prime}$ $_{\vert}$, 0 \rangle Ex: In R³, let
 $\vec{a} = \langle -1, 0, 1 \rangle$, $\vec{b} = \langle -5, -3, 2 \rangle$, $\vec{c} = \langle 1, 1 \rangle$

Notice that
 $\langle -5, -3, 2 \rangle = 2 \langle -1, 0, 1 \rangle - 3 \langle 1, 1, 0 \rangle$
 $\vec{b} = 2\vec{a} - 3\vec{c}$
 $\int_{0}^{1} \vec{b}$, is in the span of \vec{a} and \vec{c} .
 Notice that $,2\rangle = 2(-1,$ ີ**Ö** , $17 - 3$ (1,1,0) $\vec{b} = 2\vec{a} - 3\vec{c}$ $\big\}$ 0) \overrightarrow{b} is in the span of and \overrightarrow{c} . $\frac{1}{\sqrt{25}}$
 $\frac{5}{\sqrt{6}}$
 $\frac{7}{\sqrt{6}}$
 $\frac{1}{\sqrt{6}}$ ۱
|-
| ک The span of a and c.
I are linearly dependent. Another way to write 7_{6} = 2^{7}_{6} - 3^{7}_{6} $i \leq$ $7b = 2$
2 . $a 1, 1, -32 = 0$

Fact: The vectors
$$
\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r
$$

\nare linearly independent if
\nthe only solution to \vec{v}_1 and \vec{v}_r
\n $\vec{v}_1 + c_2 \vec{v}_2 + \dots + c_r \vec{v}_r = 0$
\nis $c_1 = 0, c_2 = 0, \dots, c_r = 0$.
\nIf there are more solutions
\nthen the vectors are linearly
\ndependent.

 $EX: \text{Ace} \quad \vec{v}_1 = \langle 1, -2, 1 \rangle$ $V_2 = \langle 1, 0, 1 \rangle, V_3 = \langle 0, 1, 0 \rangle$ Incarly dependent or linearly independent?

We want to solve $C_1 V_1 + C_2 V_2 + C_3 V_3 = 0$ which gives C_{1} $<$ 1, $^{-2}$, $17 + C_2$ $\overline{\mathcal{O}}_{\mathscr{S}}$ $17 + C_3 < 0,1,0)$ $=$ $\left\langle \begin{smallmatrix} 0 \end{smallmatrix} \right\rangle ^{0}$, 07 We want to solve
 $C_1V_1 + C_2V_2 + C_3V_3 = 0$

which gives
 $C_1<1,-2,17 + C_2<1,0,17 + C_3<0,1,0$

This gives
 $C_1<2,1,2,17 + C_2<1,0,17 + C_3<0,1,0$

This hecomes

This hecomes
 $C_1<2C_1+C_2$, C_1+C_2 = $C_0,0,0$

This hecomes

This gives $(c_{15}-2c_{15})$ ⁴⁷ ⁺ (a, 0, C2) + (0, C3, \circ $\langle 0, 3 \rangle$
= $\langle 0, 0 \rangle$

This becomes hecomes \sim 0 , 0

 \int ∂ \int .
ე
)

 $C_1 + C_2 = 0$
-2c₁ + c₂ = 0
C₁ + c₂ = 0

$$
\begin{array}{c}\n\begin{pmatrix}\n1 & 1 & 0 \\
-2 & 0 & 1 \\
1 & 1 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 2R_1 + R_2 - R_2 \\
0 & 1 & 0\n\end{pmatrix} & \begin{pmatrix}\n1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 0\n\end{pmatrix} \\
\begin{pmatrix}\n1 & 1 & 0 \\
1 & 1 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 2R_1 + R_2 - R_2 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin{pmatrix}\n0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0\n\end{pmatrix} & \begin
$$

 C_{2}

We get
\n
$$
C_1 + C_2 = 0
$$

\n $C_2 + \frac{1}{2}C_3 = 0$
\n $0 = 0$
\n

 $\overline{O_{0}C_{1}}= \overline{C_2}$ 2 c_2 = $0 < z = -2
\n0 < z = -2
\n0 < z = \pm 1
\n0 < z =$ - C_{2}
 $\frac{1}{2}C_{3}$ (3) c_3 = \pm Back substitute : (3) C₃ = \pm (3) C₃ = .
(2) c₂ = - $\frac{1}{2}$ C₃ = - $\frac{1}{2}$ \bigcirc \bigcirc \bigcirc = - $C_2 = -$ (- $\left(\frac{1}{2}t\right) = \frac{1}{2}t$ Plug this back into $C_1 = -C_2 = -(\frac{1}{2}t)$
 $+h_1s$ back ih_1
 C_1 $\vec{v}_1 + C_2$ $\vec{v}_2 + C_3$ \vec{v}_3 $\begin{array}{c}\n\downarrow \\
0\n\end{array}$ to get $\int \frac{1}{2} t \, dt = \int \frac{1}{2} t \, dt = 0$ $\frac{10}{2}$ $(\frac{1}{2}t)\overrightarrow{V}_{1} \nonumber \gamma\in\mathbb{R}^{n}$ in $t=2$ for $ex.$ to get

 \bigvee' - $V_{2} + 2V_{3} = 0$ So for example $\overrightarrow{v_1} = \overrightarrow{v_2}$ $2\overrightarrow{V}_{3}$ So the vectors are linearly dependent . $\nabla_1 - \nabla_2 + 2\vec{v}_3 = 0$

So for example
 $\nabla_1 = \nabla_2 - 2\vec{v}_3$

So the vectors are linearly
 S_0 the vectors are linearly
 $\frac{1}{2}$
 $\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$
 $\sum_{i=1}^{n}$
 $\sum_{i=1}^{n}$
 $\sum_{i=1}^{n}$
 $\sum_{i=1}^{n}$ Let i ⁼ < ¹ , $\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}\cdot\frac{1$ 1) $\frac{1}{n} R^2$. Are $\frac{1}{2}$ lin ind . Or in. Ind. Un $Lef's so lJe.$ $C_{1}I + C_{2}J = 0$ We get $C_1 < 1$ $0> + 420$ 1) = $0,0$

This gives $\langle (c_{1,0}^{\prime}) + (0, c_{2})^{\prime} = (0, 0)$

$$
50, 627 = 600
$$
\nThus,

\n
$$
C_{1} = 0 \quad \text{and} \quad C_{2} = 0.
$$
\n
$$
50, \text{ the only solution to } C_{1} = 0 \quad \text{and} \quad C_{2} = 0.
$$
\n
$$
50, \text{ the only solution to } C_{1} = 0 \quad \text{and} \quad C_{2} = 0.
$$
\n
$$
C_{1} = 0, C_{2} = 0.
$$
\n
$$
50, C_{1} = 0, C_{2} = 0.
$$
\n
$$
7005, \frac{7}{2} \text{ and } \text{inearly independent}
$$

Coordinate system theorem Let V_1, V_2, \ldots, V_n be n Let visues sindent vectors
linearly independent vectors \rightarrow in \mathbb{R}^n . Then $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ $\begin{array}{ccc} \n\begin{array}{ccc}\n\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{$ Coordinate system theorem)
Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ be n
linearly independent vector
in R. Then $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$
create a coordinate system
for R. That is, every
for R. That is, every
vector \vec{v} in R. can create a <u>coordinate system</u> create
for IR n That is, every be vector in IRⁿ can be written uniquely in the form - > $y = c_1V_1 + c_2V_2 + \cdots + c_nV_n$ If we $V_1 + C_2 V_2 + \cdots + C_n V_n$
write $\beta = \begin{bmatrix} 3 & 4 \\ 7 & 1 \end{bmatrix}$ then we mean that we are fixing the ordering on $+h$ e tixing ind we are giving
vectors and we are giving

the coordinate system the name ^B . People also call the vectors in ^B ^a basis. When $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_n \vec{v}_n$ then C_{1} , C_{2} , \cdots , C_{n} are called the <u>courdinates</u> of with respect to ^B and Lalled I'm concert to B an
 \forall with respect to B an

We write $\begin{bmatrix} \vec{v} \end{bmatrix}$ g = $\langle c_1, c_2 \rangle$ $, \ldots, c_{n}$

 $B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 1 \end{bmatrix}$ $\gamma = \langle 2, 3 \rangle$ $\vec{v} = 2\vec{i} + 3\vec{j}$ $\begin{array}{ccc} & \text{if } & \text$ $W = \langle -3,1 \rangle = -3\overline{x} + 1\overline{3}$ $\begin{array}{c} \boxed{\uparrow} \\[-1.5mm] \sqrt{\uparrow} \\[-1.5mm] \sqrt{1.5~\text{m}} \end{array} = \begin{array}{c} \boxed{\uparrow} \\[-1.5mm] \sqrt{1.5~\text{m}} \end{array}$ $\beta = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$ is called the Standard basis (ur standard \mathbb{R}^2 Courdinate system) for

$$
\frac{Ex: Le + \vec{a} = \langle 1, 1 \rangle, \vec{b} = \langle -1, 1 \rangle
$$
\n
$$
be in \mathbb{R}^{2}. Let's show
$$
\n
$$
They are linearly independent.
$$

We must solve
\n
$$
C_1 \overrightarrow{a} + C_2 \overrightarrow{b} = 0
$$
\n
$$
C_1 \overrightarrow{a} + C_2 \overrightarrow{b} = 0
$$
\n
$$
C_1 \overrightarrow{c} + C_1 \overrightarrow{c} + C_2 \overrightarrow{c} - C_1 \overrightarrow{c} + C_2 \overrightarrow{c} = C_2 \overrightarrow{a}
$$
\n
$$
C_1 \overrightarrow{c} - C_2 \overrightarrow{c} + C_2 \overrightarrow{c} = C_2 \overrightarrow{a}
$$

 $hvs,$ (z) $c_2 = 0$ $O_{c_1} = c_2 = 0$

Thus, the only solution to
\n
$$
C_1 \overrightarrow{a} + C_2 \overrightarrow{b} = 0
$$

\nis $C_1 = 0$, $C_2 = 0$.
\nSo, $\overrightarrow{a} = \langle 1, 1 \rangle$, $\overrightarrow{b} = \langle -1, 1 \rangle$
\nare linearly independent.