Math 2550-04 10123/24

Last time we showed that if $\vec{a} = \langle 1, 1 \rangle$, $\vec{b} = \langle -1, 1 \rangle$ then these vectors are bf linearly independent We have 2 linearly independent vectors in R^c. So, they will make a coordinate system/basis. So every other vector V can Written Uniquely as be $V = C_1 \alpha + C_2 b$ coordinates of v with respect to this coordinate system

Let $B = [\overline{a}, \overline{b}]$ Mame for coordinate system using a & b Let $\vec{v} = \langle 3, i \rangle$. Let's find V's coordinates. Want to solve $\langle 3, 1 \rangle = c_1 \langle 1, 1 \rangle + c_2 \langle -1, 1 \rangle$ $\langle -1, 1 \rangle + c_2 \langle -1, 1 \rangle$ $\langle -1, 1 \rangle + c_2 \langle -1, 1 \rangle$ $(3,1) = (c_{1},c_{1}) + (-c_{2},c_{2})$ This becomes $(3,1) = (C_{1} - C_{2}, C_{1} + C_{2})$ which gives

We get $C_1 - C_2 = 3$ (1) $C_1 + C_2 = 1$ (2) $(1) + (2) = y_1 + (2) = 2 = 2$ $pluy c_1 = 2$ into (2) to get 2+c_2 = [. So, $c_2 = -[.]$

Thus, $< 3, 17 = 2 < 1, 17 - 1 \cdot (-1, 1)$ $\vec{v} = 2 \cdot \vec{a} - 1 \cdot \vec{b}$ $\begin{bmatrix} 1 \\ V \end{bmatrix}_{\beta} = \langle 2, -1 \rangle$ coordinates of v 56, W/ respect to B

Simplified picture for v 29 V = 2a - b

Q: Suppose you know that $[\vec{w}]_{\beta} = \langle 4, 5 \rangle$. What is \vec{w} ? S B-coordinates B=[a,b] This tell's us W = 4a - 5b

Ex: In IR', let え=くし、のろうこ=くのしのう $\vec{k} = \langle 0, 0, 1 \rangle$ r 2 In the HW Yon will show these vectors are linearly independent. $SO, P = [i,j,k] i < \alpha$ coordinate system or basis for R?. This is called the standard basis for IR?

So for above
$$[\vec{v}]_{\beta} = \langle 1, 2, 3 \rangle$$

since $\vec{v} = 1 \cdot \vec{i} + 2\vec{j} + 3\vec{k}$
Recall that \vec{u} and \vec{v} are
in \mathbb{R}^2 or \mathbb{R}^3 then
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(\theta)$
where Θ is the angle between
 \vec{u} and \vec{v} .
Therefore, $\Theta = 90^\circ$
 $exactly$ when
 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(90^\circ) = 0$

Def: Given two vectors in Rⁿ We Say they are orthogonal if $\vec{u} \cdot \vec{v} = 0$ EX: In IR, $\vec{1} \cdot \vec{1} = \langle 1, 0 \rangle \cdot \langle 0, 1 \rangle = | \cdot 0 + 0 \cdot |$ 二 () Soj ij are or thogonal.

