Math 2550-04 10/30/24

Topic 7 - Subspaces of
$$\mathbb{R}^n$$

Def: Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r$ be r
vectors in \mathbb{R}^n . The set of
all linear combinations
 $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + C_r \vec{v}_r$
of these vectors is called
the subspace spanned by $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r$
We denote it by
 $\text{Span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r)$
 $= \{c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + C_r \vec{v}_r \mid c_1, c_2, \dots, c_r \in \mathbb{R}\}$
Call this subspace W,
 $\text{If } \vec{v}_1, \vec{v}_2, \dots, \vec{v}_r$ are linearly independent

then we say that the dimension
of W is r and write
$$dim(W) = r$$

And we call $B = [\vec{v}_1, \vec{v}_2, ..., \vec{v}_r]$
a basis for W.

Ex: In
$$\mathbb{R}^{2}$$
, let $\vec{v} = \langle 1, 2 \rangle$.
Let
 $W = \operatorname{span}(\vec{v}) = \{ \vec{v} \mid c \in \mathbb{R} \}$
For example some vectors
in W are:
 $0 \cdot \vec{v} = 0 \langle 1, 2 \rangle = \langle 0, 0 \rangle$
 $1 \cdot \vec{v} = 1 \langle 1, 2 \rangle = \langle 1, 2 \rangle$
 $-1 \cdot \vec{v} = -1 \langle 1, 2 \rangle = \langle -1, -2 \rangle$
 $2 \cdot \vec{v} = 2 \langle 1, 2 \rangle = \langle 2, 4 \rangle$

Since
$$\vec{v} = \langle 1, 2 \rangle$$
 is not the
zero vector we get that
 $B = [\vec{v}]$ is a linearly independent
set and so its a basis for W.
Since B has only one vector
the dimension of W is $dim(W) = 1$

Ex; In \mathbb{R}^2 , let $\vec{\lambda} = \langle 1, 0 \rangle$, j=<0,17. We already know that B=[i,j] is a basis for all of IR², that is, any vector $\vec{V} = \langle a, b \rangle$ in \mathbb{R}^2 is in the span of i, j because $\vec{v} = \langle \alpha, b \rangle = \alpha \vec{i} + b \vec{j}$

b)

$$V = \langle a,b \rangle = a \vec{i} + b \vec{j}$$

Here $|R^2 = span(\vec{i},\vec{j})|$
is a subspace of itself.
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
is a subspace of itself.
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{i} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$
 $V = \langle a,b \rangle = a \vec{j} + b \vec{j}$

Def: In
$$\mathbb{R}^n$$
, let
 $W = \text{span}(\vec{o}) = \{\vec{o}\}$
 W has no basis, but we define
its dimension to be 0.
In \mathbb{R}^2 : $\{\vec{v},\vec{o}\}=W$
 $\dim(W)=0$

$$W = \{ \vec{o} \} \text{ is called the } \frac{1}{1 \text{ integral}}$$

$$Subspace of IR^{4}$$

$$All subspaces of IR^{2}$$

$$dimension m \frac{1}{1 \text{ integralent}} picture of span description
dimension m \frac{1}{1 \text{ integralent}} of basis
0 no basis
0 no basis
0 no basis
1 $V_{1} \neq 0$
1 $V_{1} \neq 0$
2 V_{1}, V_{2}

$$V_{1}, V_{2}$$

$$V_{1}, V_{2}$$

$$R$$$$

Subspaces in IR3			
dimension	basis of m linearly independent	picture of span of basis	description
0	ho basis		point at origin
	Ч V		line through origin
Z	$-1 \rightarrow V_{1} \gamma V_{2}$	V2 V2 K	a plane Hrough the origin, that V, V2 lie on
3	$ \begin{array}{ccc} -1 & -3 & -3 \\ V_{1} & V_{2} & \sqrt{3} \end{array} $	N2 VI VI VI	all of IR ³

Homogeneous subspace theorem W be a subset of IR". Let a subspace if Wis Then and only if W consists of all vectors $\vec{V} = \langle X_1, X_2, ..., X_n \rangle$ that solve a homogeneous system of linear equations $\alpha_{11}\chi_1 + \alpha_{12}\chi_2 + \dots + \alpha_{1n}\chi_n$ $a_{21} \chi_1 + a_{22} \chi_2 + a_{11} + a_{21} \chi_n =$ $\alpha_{m_1}\chi_1 + \alpha_{m_2}\chi_2 + \dots + \alpha_{m_n}\chi_n =$ homogeneous means = 0un all equations

Ex: In IR3, let $W = \{\langle x, y, z \rangle | z = 0\}$ homogeneous System x,y,o> W consists
of all the vectors in the xy-plane Let's make a basis that spans W Let V be in W. Z=0 Then, $\vec{v} = \langle x, y, 0 \rangle$. Su, $\vec{v} = \langle x, y, o \rangle = \langle x, 0, o \rangle + \langle 0, y, o \rangle$ $= \times < 1, 0, 0 > + y < 0, 1, 0 >$ $= \times \overline{1} + 9\overline{1}$

So,
$$\vec{x} = \langle 1, 0, 0 \rangle$$
, $\vec{j} = \langle 0, 1, 0 \rangle$
span W.
Are \vec{x}, \vec{j} linearly independent?
Consider
 $c_1 \vec{x} + c_2 \vec{j} = 0$
We get
 $c_1 \langle 1, 0, 0 \rangle + c_2 \langle 0, 1, 0 \rangle = \langle 0, 0, 0 \rangle$
giving
 $\langle c_{1,1} c_{2,1} 0 \rangle = \langle 0, 0, 0 \rangle$
This gives $c_1 = 0, c_2 = 0$.
Since the only solution to
 $c_1 \vec{x} + c_2 \vec{j} = 0$
is $c_1 = 0, c_2 = 0$. We get \vec{x}, \vec{j}
are linearly independent.

So, $B = [\vec{i}, \vec{j}]$ is a basis for W and dim (W) = 2 since there are two vectors in the basis.