Math 2550-04 11/18/24

lopic 8 - Linear Transformations and Eigenvalues

Def: Given two sets A and B a function of from A to B is a rule that assigns to each unique element in A a f(x) in B. e write f: A domain or input to Function

Note that

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ y + 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$A$$

 $If A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} + hen$ $T(\vec{v}) = A\vec{v}$

Def: A linear transformation
is a function
$$T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$$

where $T(\vec{v}) = A\vec{v}$
and A is an mxn matrix.
 $Ex: T(\overset{x}{z}) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
above is a linear transformation
 $Ex: T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$
 $T(\overset{x}{z}) = \begin{pmatrix} 5 & 3 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
is a linear transformation

Note that $T\left(\begin{array}{c} x\\ y\end{array}\right) = \left(\begin{array}{c} 5x + 3y\\ 5y\end{array}\right)$

For example $T\binom{1}{2} = \binom{5(1)+3(2)}{5(2)} = \binom{11}{10}$

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a function. Then T is a linear transformation if and unly if the following two properties hold for any vectors V, w and scalar d: $(1) T(\vec{v} + \vec{\omega}) = T(\vec{v}) + T(\vec{\omega})$ $(z)T(x\vec{v}) = \chi T(\vec{v})$

Why are () & (2) true if $T(\vec{v}) = A\vec{v}$ is a linear transformation? $(I) T(\vec{v} + \vec{w}) = A(\vec{v} + \vec{w})$ \neq $A\vec{v} + A\vec{w}$ (matiix propects) -T(1)+T(1) $(2)T(\chi \vec{v}) = A(\chi \vec{v}) = \chi(A \vec{v})$ $= \chi T(\vec{v})$

 $Vef: Let T: \mathbb{R}^n \to \mathbb{R}^n \quad be a$ linear transformation defined by $T(\vec{v}) = A\vec{v}$ where A is an NXN Matrix. Suppose that is a vector in IRn with $\vec{v} \neq \vec{o}$ and $T(\vec{v}) = \lambda \vec{v}$ Where λ is a scalar/number. Then λ is called an <u>eigenvalue</u> of T and V is called an eigenvector of T corresponding Given an eigenvalue λ of T define the <u>eigenspace</u> of λ to be $to \lambda$. $E_{\lambda}(T) = \{ \vec{\omega} \mid T(\vec{\omega}) = \lambda \vec{\omega} \}$

this set consists of
all eigenvectors
corresponding to
$$\lambda$$
 and
also the zero vector O
this will make E_A(T)
a subspace

$$\frac{E_{X}}{T(Y)} = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\frac{A}{Then, T \text{ is a linear transformation}}{A}$$

$$\frac{A}{T(Y)} = \begin{pmatrix} 10 \times -9 \\ 4 \times -2 \\ y \end{pmatrix}$$

Note that

$$T\left(\frac{3}{2}\right) = \begin{pmatrix} 10\cdot3 - 9\cdot2\\ 4\cdot3 - 2\cdot2 \end{pmatrix}$$

$$= \begin{pmatrix} 12\\ 8 \end{pmatrix}$$

$$= 4 \begin{pmatrix} 3\\ 2 \end{pmatrix}$$

Thus, $T\left(\frac{3}{2}\right) = 4\cdot\begin{pmatrix} 3\\ 2 \end{pmatrix}$
 $T\left(\frac{3}{2}\right) = 4\cdot\begin{pmatrix} 3\\ 2 \end{pmatrix}$
 $T\left(\frac{3}{2}\right) = \frac{1}{2} \cdot\begin{pmatrix} 3\\ 2 \end{pmatrix}$
So, $\lambda = 4$ is an eigenvalue
of T and $\vec{v} = \begin{pmatrix} 3\\ 2 \end{pmatrix}$ is a
corresponding eigenvector.
So,
 $E_{4}(T) = \sum_{n=1}^{\infty} \begin{pmatrix} 3\\ 2 \end{pmatrix}, \dots$

How do we find the eigenvalues of a linear transformation T where $T(\vec{v}) = A\vec{v}$ and A is an nxn matrix

Suppose $\vec{v} \neq \vec{o}$ and $\vec{A}\vec{v} = \vec{A}\vec{v}$. Then $A\vec{v} - \lambda\vec{v} = \vec{0}$ $\int (A - \lambda I_n)\vec{v} = \vec{0}$ The only way this can happen is if $(A - \lambda I_n)$ has no in Jerse. Why? Because if $(A - \lambda I_n)^{-1}$ existed then we get

 $(A - \lambda I_n)^{-1} (A - \lambda I_n)^{-1} = (A - \lambda I_n)^{-1} (\partial_{i} U_{i})^{-1} (\partial_{i} U_{i})^{$ $\overline{\mathbf{V}}$ Then, $\vec{v} = \vec{0}$ But V≠0. So, A-JI, has no inverse and $det(A-\lambda I_n)=0$. Summary: The eigenvalues of T or A are the A that satisfy $det(A - \lambda I_n) = 0$ characteristic polynomial of A