Math 2550-04) 9/9/24

I'm redoing Topic 6 and after on the website. Both notes and HW I'm Keeping the old way I did these later topics at the bottom of the website, but we won't use them.

Ex: Let
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Recall $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Also

$$AI_{2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 & 3 \cdot 0 + 4 \cdot 1 \\ 3 \cdot 1 + 4 \cdot 0 & 3 \cdot 0 + 4 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$$
So, $AI_{2} = A$ and $I_{2}A = A$.

$$\frac{E_X: Let}{B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}} \xrightarrow{3 \times 2} matrix$$

$$\begin{array}{c} \text{Recall} \\ \text{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

Then,

$$I_{3}B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$3 \times 3 \quad 3 \times 2$$

$$1 \quad 2 \quad 1 \quad 1$$
answer is 3×2

$$= \begin{pmatrix} (1 & 0 & 0) \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} & (1 & 0 & 0) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \\ (0 & 1 & 0) \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} & (0 & 1 & 0) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \\ (0 & 0 & 1) \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} & (0 & 0 & 1) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \end{pmatrix}$$

$$=\begin{pmatrix} 1 & z \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = B$$

So, $I_3 B = B$.

Can we do
$$BI_3$$
?
 $BI_3 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $3x^2 & 3x^3$
 $1 & 1 & 1 & 1 \\ 3x^2 & 3x^3$
 $1 & 1 & 1 & 1 \\ 3x^2 & 3x^3$
 $1 & 1 & 1 & 1 \\ 3x^2 & 3x^3$
 $1 & 1 & 1 & 1 \\ 3x^2 & 3x^3$
 $1 & 1 & 1 & 1 \\ 3x^2 & 1 & 1 & 1 \\ 3x^2 & 2x^2 & 1 \\$

Algebraic properties of matrices Let A, B, C be matrices. Let X, B be real numbers. Then the following are true where we will assume that the sizes of the matrices are such that the operations are defined. (DA+B=B+A)2A+(B+c)=(A+B)+C(3) A(BC) = (AB)C $(\mathbf{F} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$ (B+C)A = BA+CA

(6) A(B-C) = AB - AC(7)(B-C)A = BA - CA $(8) \propto (B+c) = \propto B + \alpha C$ $(g) \land (B-C) = \land B - \land C$ $(\alpha + \beta)A = \alpha A + \beta A$ $(\alpha - \beta)A = \alpha A - \beta A$ $(12) \times (\beta A) = (\lambda \beta) A$ $(13) \quad \swarrow (AB) = (\alpha A)B = A(\alpha B)$ $(14)(A^{T})^{T} = A$ $(15)(A+B)^{T} = A^{T} + B^{T}$ $(\overline{IG}) (A - B)^{T} = A^{T} - B^{T}$ $(7) (\chi A)^{T} = \chi A^{T}$

Let's prove (5)
$$(A+B)^{T} = A^{T} + B^{T}$$

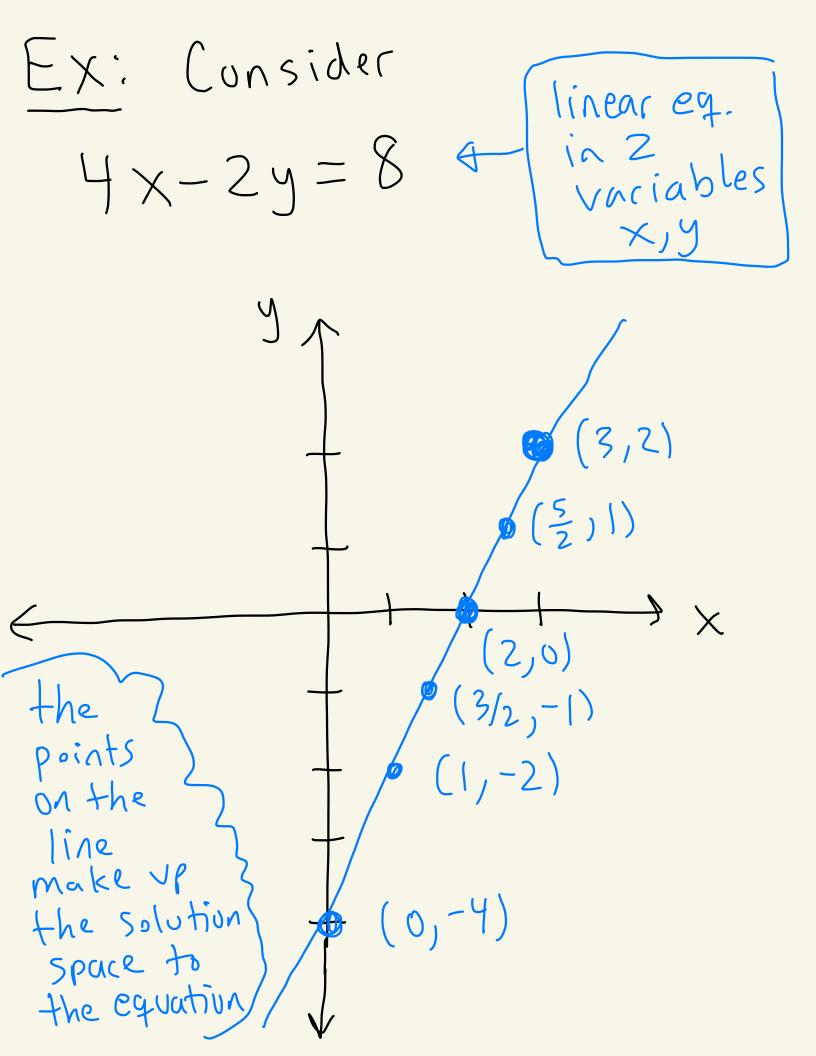
when A and B are both 2×2.
Let
 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.
The LHS gives:
 $(A+B)^{T} = \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix})^{T}$
 $= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}^{T}$
 $= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$
Also, the RHS gives:

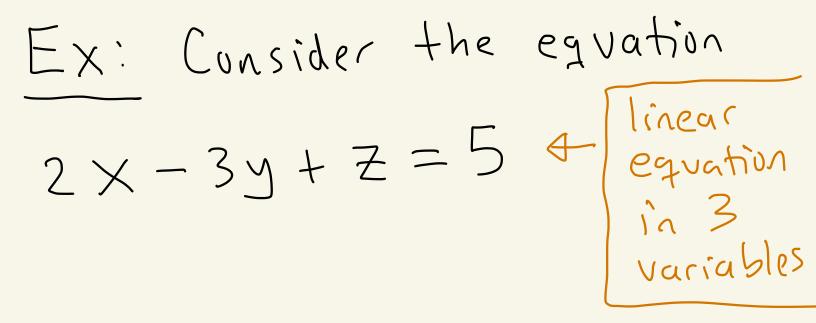
 $A^{\mathsf{T}} + B^{\mathsf{T}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\mathsf{T}} + \begin{pmatrix} e & f \\ g & h \end{pmatrix}^{\mathsf{T}}$ EQ $= \begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} f & g \\ f & h \end{pmatrix}$ $= \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix}$

Thus, $(A+B)^{T} = A^{T} + B^{T}$.

Topic 3 - Systems of
linear equations
Def: A linear equation in
the n variables X1,X2,...,Xn
is an equation of the form

$$a_1X_1 + a_2X_2 + ... + a_nX_n = b$$
 (*)
Where $a_1, a_2, ..., a_n, b$ are
constant real numbers.
The solution space of (*)
cunsists of the set of all
(X,,X2,...,Xn) that solve (*).





In Calculus, You learn this is a plane in 3d. Some points in the Solution space are: (X,Y,Z) = (Z,0,1), (Y,1,0),(0,0,5)g 000

