Math 2550-01 10/16/24

Topic 6-Coordinate systems
in IRⁿ
Def: Let
$$\beta = \frac{1}{2} \vec{v}_1, \vec{v}_2, ..., \vec{v}_r$$

be a set of r vectors in IRⁿ.
• We say that a vector \vec{v}
is in the span of
 $\beta = \frac{2}{2} \vec{v}_1, \vec{v}_2, ..., \vec{v}_r$ } if we
can write
 $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + ... + c_r \vec{v}_r$
where $c_1, c_2, ..., c_r$ are
real numbers.

Called a linear combination] of V, V2, ..., Vr

• Suppose r = 1 and $\beta = \{\vec{v}, \}$. f = 0, then we say B is a linearly dependent set $TFV_{i} \neq \vec{0}$, then we say that P is a linearly independent set.

Suppose r>2, so B has 2 or more vectors. If one of the vectors in B can be Written as a linear combination ut the other vectors, then B is called linearly dependent

It not Bis called linearly independent. Ex: Let $\vec{\alpha} = \langle 0, 0 \rangle$ in \mathbb{R}^2 . $B = \{\overline{a}\}.$ 1 - 0 1 - 0 The vectors in the span of B are of the form $c_1 \overline{a} = c_1 \overline{0} = \overline{0}$ example fur $\left| \cdot \vec{0} = \vec{0} \right|$ $2, \overline{0} = \overline{0}$

-5.0 = 0You just get 0 every time. Since $B = \{0\}$ by def, Bis called a linearly dependent set. Ex: Let $\vec{v} = \langle J_2 \rangle$ in \mathbb{R}^2 . $\beta = \{ \vec{v} \}.$ What are some vectors in the span of B? They are of the form c, V.

The span of V consists of all rectors on the line that V makes. Ex: Let $\vec{\lambda} = \langle J_0 \rangle, \quad \vec{J} = \langle 0, I \rangle$ be in IR. Let B= { ij } What are the vectors in the Span of B? These vectors are of the form $C_1 \dot{\lambda} + C_2 \tilde{J}$ So some examples are $2\vec{1}+3\vec{1}=2\langle 1,0\rangle+3\langle 0,1\rangle$ = < 2,37

 $= \alpha < 1, 0 \rangle + b < 0, 1 \rangle$ $= \alpha \vec{i} + b \vec{j}$

Q: Is $B = \{\overline{z}, \overline{z}\}$ a linearly dependent or linearly independent set? Is one of the vectors a linear combination of the other? Can we make \vec{x} from \vec{j} ? That is, is $\vec{x} = c_1 \vec{j}$? $T \leq \langle 1, 0 \rangle = c_1 \langle 0, 17 \rangle$ No because this would require <1,0>=<0,c,>

Which would give
$$I=0$$

which isn't possible.
Likewise \vec{j} is not a multiple
of \vec{z} either. That is, you
can't write $\langle 0,1\rangle = c_1 \langle 1,0\rangle$
 \vec{j}
The vectors are linearly independent.
Ex: Let $\vec{V}_1 = \langle 1,1\rangle$ and
 $\vec{V}_2 = \langle 2,2\rangle$ in IR^2 .
Let $\beta = \xi \vec{V}_1, \vec{V}_2$?.
 \vec{Q} : Is β linearly dependent
or linearly independent?

Note that $\vec{v}_{\lambda} = 2\vec{v}_{\lambda}$ Su, Vz is a linear combination Thus, $\beta = \{\vec{v}_1, \vec{v}_2\}$ is a linearly dependent set. Note V2=ZV, can be written $Z\vec{v}_1 - |\vec{v}_2 = \vec{0}$

Q: What vectors lie in the span of $B = \overline{z} \overline{v}_1, \overline{v}_2$? Some examples of vectors in the span are

$$\begin{aligned} |\cdot \vec{v}_{1} - 2\vec{v}_{2} = |\cdot \langle i, 1 \rangle - 2 \cdot \langle z, z \rangle \\ = \langle -3, -3 \rangle \\ 2 \cdot \vec{v}_{1} + 2\vec{v}_{2} = 2 \langle i, 1 \rangle + 2 \langle z, z \rangle \\ = \langle 6, 6 \rangle \end{aligned}$$

Note any vector in the span
of
$$\beta = \{\vec{v}_1, \vec{v}_2\}$$
 looks like
 $c_1\vec{v}_1 + c_2\vec{v}_2 = c_1 < 1, 17 + c_2 < 2, 2)$
 $= \langle c_1 + 2c_2, c_1 + 2c_2 \rangle$
 $= (c_1 + 2c_2) < 1, 17$
 $= (c_1 + 2c_2) \cdot \vec{v}_1$
So, the span of $\beta = \{\vec{v}_1, \vec{v}_2\}$
is really just the span of \vec{v}_1
by itself.

$$\frac{Syllabus}{final} - \frac{1}{33.3\%}$$

$$\frac{drop 1}{max \{test l, test2\}} = 50\%$$

$$final = 50\%$$

$$\frac{no final}{test 2 - 50\%}$$

$$final = final = 100\%$$