$Math 2550 - 01$ Math 2550-01 10/23/24

Last time we showed that L G S T TIMI
a = < 1, 1 >, $\zeta = \langle -1, 1 \rangle$ are linearly ast time we showed that
 $\vec{\lambda} = \langle 1, 1 \rangle$, $\vec{b} = \langle -1, 1 \rangle$
 \vec{c} are linearly

independent.

Since $\beta = [\vec{a}, \vec{b}]$

onsists of 2 linearly independ

cectures in IR² we know that

rectures in IR² we know that u re linearig

independent.

Since $\beta = \begin{bmatrix} a \\ b \end{bmatrix}$ 5] consists of 2 linearly independent rectors in IR2 we know that vecinis in institution of system
B is a basis/coordinate system for R? So any vector V rector v 3 is a basis/cordinal form \overline{R} . So any vector V
for \mathbb{R}^2 . So any vector V
in \mathbb{R}^2 will be able to be for \mathbb{R}^2 . So any vector
in \mathbb{R}^2 will be able,
written $\vec{v} = c_1 \vec{a} + c_2 \vec{b}$ W here C_{1} c_{ν} are unique numbers $associated with \frac{1}{v}caled$ called its coordinates.

Let
$$
\vec{v} = \langle 3,1 \rangle
$$
.
\nLet \vec{v} find \vec{v} is coordinates.
\nNeed to solve
\n $\langle 3,1 \rangle = c_1 \langle 1,1 \rangle + c_2 \langle -1,1 \rangle$
\n $\langle 3,1 \rangle = c_1 \langle 1,1 \rangle + c_2 \langle -1,1 \rangle$
\nThis gives
\n $\langle 3,1 \rangle = \langle c_1, c_1 \rangle + \langle -c_2, c_2 \rangle$
\nSo
\n $\langle 3,1 \rangle = \langle c_1, c_2 \rangle + c_2 \langle -1, c_3 \rangle$
\nNeed the solve
\n $\langle c_1 - c_2 = 3 \rangle$
\n $\langle c_1 + c_2 = 1 \rangle$

Need
$$
\frac{\text{10} \cdot \text{10}}{1 - 1} = \frac{1}{2}
$$

2 = 1 2

 $(1) + (2)$ gives $2c_1 = 4$. S_{0} $C_{1} = 2$
2 + $C_{2} = 1$, Plug into (2) to get $2+c_2=1$. $S_{0}/C_{2}=-1.$ $D+Q$ gives $2c_1=4$. So $C_1=2$

Plug into 2 to get $2+c_2=1$.

So, $C_2=-1$.

Thus,
 $\langle 3,1 \rangle = 2\langle 1,1 \rangle - 1\cdot\langle -1,1 \rangle$
 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

So $\frac{1}{2}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\left[\begin{array}{c}p\\y\end{array}\right]_{\beta}=\left\langle 2\right\rangle$ - $\begin{matrix} \vert \ \vert \ \end{matrix}$ $\frac{2}{\sqrt[3]{s}}$ B-coordinates $\beta = [\vec{a}, \vec{b}]$

Let's draw ^a picture.

Suppose you know that $Suppose Y04$
 $\begin{matrix} \overrightarrow{u} \\ \overrightarrow{w} \end{matrix} = \begin{matrix} 4 \\ 4 \end{matrix}$ $\begin{array}{ccc}\n\text{Know that} & \rightarrow \\ -5\text{?} & \text{What is } \text{w?}\n\end{array}$ $\frac{Suppose}{LNDB}$ β -coordinates $\frac{1}{\left|\lambda\right|}$ β =(00%)
B = $\begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$ you know that

= <4,-5> What is W?

dinates

), a = <1,1>, b = <-1,1>

= <9,-1>

= <9,-1>

+a = <4,4> , $= \langle 1, 1 \rangle, 1, 1 \rangle$ We get $\frac{1}{2}$ $(56 - 4(1, 1) - 5(-1, 1))$ 1) = $\begin{align} - & | \searrow \rangle \\ & \leq \langle \heartsuit \rangle \end{align}$ - 17 **1** $4a = 4,47$ $B = [a, b]$, $\vec{a} = \langle 1, 1 \rangle, \vec{b} =$
 $B = [a, b]$, $\vec{a} = \langle 1, 1 \rangle, \vec{b} =$
 $\vec{w} = \sqrt{\vec{a} - 5\vec{b}} = \frac{4}{5}\langle 9 \rangle$
 $\vec{w} = \frac{4}{5}\langle 4, 4 \rangle$
 $\vec{a} = \langle 4, 4 \rangle$ \in $\frac{1}{\omega^{3}}$
 $\frac{1}{\omega^{5}}$ -1) = 42 -56 $\begin{bmatrix} \downarrow \downarrow \downarrow \downarrow \end{bmatrix}$ ↓- \ddagger $\frac{1}{\pm}$ \vec{a}
 $\vec{a$ $\overline{ }$ $56 = 451$
 $= 69$
 $= 69$
 $= 65$

Ex:	In \mathbb{R}^3 , let $\overline{\lambda} = \langle 1, 0, 0 \rangle$
$\overline{1} = \langle 0, 1, 0 \rangle$, $\overline{k} = \langle 0, 0, 1 \rangle$	
$\overline{2}$	In the How from the two from the two the second in the second independent.
$\langle 0, \beta = [\overline{\lambda}, \overline{\lambda}, \overline{k}]$ is a basis or coordinate system for \mathbb{R}^3 .	
$\overline{2}$	In the two independent.
basis for \mathbb{R}^3 .	
$\overline{L}f$ for example, $\overline{v} = \langle 1, 2, 3 \rangle$.	

Then,

 $\vec{y} = \langle 1, 2, 3 \rangle$ $\langle 1,0,0 \rangle + \langle 0,2,0 \rangle + \langle 0,0,3 \rangle$ $= |C_1, C_2, C_3| + 2 < 0, |C_1, C_4| > + 3 < 0, |C_1| >$ $= 1 \cdot i + 2 \cdot j + 3 \cdot k$ SO $\langle j, \overline{c}, \overline{s} \rangle$ $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ $\boxed{ }$

Recall that if
$$
\vec{u}
$$
 and \vec{v}
\nare in \mathbb{R}^2 or \mathbb{R}^3 we have
\n $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot cos(\theta)$
\nwhere θ is the angle between
\n \vec{u} and \vec{v}
\n $\int_{\mathbf{v}} \theta = 90^\circ$
\nprecisely when
\n $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(90^\circ) = 0$
\n $\frac{p_{e}f}{\vec{u} \cdot \vec{v}} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(90^\circ) = 0$
\n $\frac{p_{e}f}{\vec{u} \cdot \vec{v}} = \frac{p_{\dot{u}}}{\vec{u} \cdot \vec{v}} \text{ in } \mathbb{R}^n$, we say
\nthat $\vec{u} \cdot \vec{u} = 0$.
\nif $\vec{a} \cdot \vec{b} = 0$.

$$
\frac{1}{a}
$$
 and $\frac{1}{b}$ in \mathbb{R}^{n} , we say
that $\frac{1}{a}$ and $\frac{1}{b}$ are orthogonal
if $\frac{1}{a} \cdot \frac{1}{b} = 0$.

$$
\frac{Ex\ddot{i} + \pi}{2\vec{i} - 1} = \langle 1, 0 \rangle \cdot \langle 0, 1 \rangle = (1)(0) + (0)(1) = 0
$$
\n
$$
\frac{1}{3} \frac{1}{4} \frac{S_{0j} \ddot{j} + \pi}{2}
$$
\n
$$
\frac{1}{3} \frac{1}{4} \frac{S_{0j} \ddot{j} + \pi}{2}
$$
\n
$$
\frac{E_x \ddot{i} + \pi}{2} \frac{1}{a} \frac{1}{b} \frac{1}{b} = \langle 1, 1 \rangle \cdot \langle 1, 1 \rangle
$$
\n
$$
\frac{1}{b} \frac{1}{b} \frac{1}{b} \frac{1}{a} \frac{1}{a} \frac{1}{b} \frac{1}{a} \frac{1}{b} = \langle 1, 1 \rangle \cdot \langle 1, 1 \rangle
$$
\n
$$
= (1)(-1) + (1)(1)
$$
\n
$$
= 0
$$

