Math 2550-01 10/23/24

Last time we showed that る=く1,17, 6=く-1,17 4 7 a e+++are linearly Independent. Since $\beta = [\vec{a}, \vec{b}]$ Consists of 2 linearly independent Vectors in IR² we know that B is a basis / coordinate system for R?. So any vector v in R² will be able to be Written $\vec{V} = c_1 \vec{a} + c_2 \vec{b}$ Where CI, CZ are Unique numbers associated with V, called its coordinates.

Let
$$\vec{v} = \langle 3, 1 \rangle$$
.
Let's find \vec{v} 's coordinates.
Need to solve
 $\langle 3, 1 \rangle = c_1 \langle 1, 1 \rangle + c_2 \langle -1, 1 \rangle$
 $\vec{v} = \langle c_1 \langle 1, 1 \rangle + c_2 \langle -1, 1 \rangle$
 $\vec{v} = \langle c_1 \langle 1, 1 \rangle + c_2 \langle -1, 1 \rangle$
This gives
 $\langle 3, 1 \rangle = \langle c_1, c_1 \rangle + \langle -c_2, c_2 \rangle$
So,
 $\langle 3, 1 \rangle = \langle c_1 - c_2, c_1 + c_2 \rangle$
The second s

Need to solve

$$C_1 - C_2 = 3$$
 (1)
 $C_1 + C_2 = 1$ (2)

 $So[c_1=2]$ (1) + (2) gives $2c_1 = 4$. $2 + c_2 = 1.$ Plug into (2) to get $So_{1}(C_{2}=-1.)$ $\frac{3}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{-1}}$ Thus, Soj $\begin{bmatrix} \vec{v} \end{bmatrix} = \langle 2, -1 \rangle$ $\begin{bmatrix} \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$ $\vec{v} \leq B - \text{coordinates}$ $\begin{bmatrix} B = \begin{bmatrix} \vec{a}, \vec{b} \end{bmatrix}$

picture. Let's draw a

Suppose you know that $[\vec{w}]_{\mathbf{B}} = \langle 4, -5 \rangle$. What is \vec{w} ? 25 B-coordinates $\beta = [\vec{a}, \vec{b}], \vec{a} = \langle i, i \rangle, \vec{b} = \langle -i, i \rangle$ We get $\vec{w} = 4\vec{a} - 5\vec{b} = 4\langle 1, 1 \rangle - 5\langle -1, 1 \rangle$ $= \langle 9, -1 \rangle$ 4a = < 4, 4 > \blacktriangleright $\vec{w} = \langle 9, -1 \rangle = 4\vec{a} - 5\vec{b}$ $\langle 5, -5 \rangle$ 57=

Ex: In
$$\mathbb{R}^{3}$$
, let $\vec{i} = \langle 1, 0, 0 \rangle$,
 $\vec{j} = \langle 0, 1, 0 \rangle$, $\vec{k} = \langle 0, 0, 1 \rangle$.
In the HW
you will show
that $\vec{i}, \vec{j}, \vec{k}$
are linearly
independent.
So, $B = [\vec{i}, \vec{j}, \vec{k}]$ is a basis
or coordinate system for \mathbb{R}^{3} .
It's called the standard
basis for \mathbb{R}^{3} .
If for example, $\vec{V} = \langle 1, 2, 3 \rangle$

Then,

 $\vec{v} = \langle 1, 2, 3 \rangle$ $= \langle 0, 0 \rangle + \langle 0, 2, 0 \rangle + \langle 0, 0, 3 \rangle$ $=1\cdot 1 + 2\cdot j + 3\cdot k$ So =<),2,3>

Recall that if
$$\vec{u}$$
 and \vec{v}
are in \mathbb{R}^2 or \mathbb{R}^3 we have
 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos(\theta)$
where θ is the angle between
 \vec{u} and \vec{v}
So $\theta = 90^\circ$
precisely when
 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cos(90^\circ) = 0$
O

Def: Given any two vectors
 \vec{a} and \vec{b} in \mathbb{R}^n , we say

$$\vec{a}$$
 and \vec{b} in (\mathbb{R}^n) , we say
that \vec{a} and \vec{b} are orthogonal
if $\vec{a} \cdot \vec{b} = 0$.

$$\frac{E \times i}{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

$$\vec{i} = \langle I, 0 \rangle \cdot \langle 0, 1 \rangle = 0$$

Ex: In
$$\mathbb{R}^2$$
, let $\vec{a} = \langle 1, 1 \rangle$, $\vec{b} = \langle -1, 1 \rangle$
 $\vec{b} = \langle 1, 1 \rangle \cdot \langle -1, 1 \rangle$
 $\vec{c} = \langle 1, 1 \rangle \cdot \langle -1, 1 \rangle$
 $= \langle 1, 1 \rangle \cdot \langle -1, 1 \rangle$
 $= 0$
So, \vec{a} and \vec{b} are orthogonal

