Math 2550-01 10/30/24

Topic 7 - Subspaces of R¹ Def: Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r$ be r vectors in IRn. The set of all linear combinations $C_1 v_1 + C_2 v_2 + \dots + C_r v_r$ is called the <u>subspace</u> spanned by Vi, Vzjin, Vr. We denote it by $Span(V, V_2, \dots, V_r)$ $= \left\{ c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_r \vec{v}_r \right\} c_1 c_2 \cdots c_r \in \mathbb{R} \right\}$ Call this subspace W. If Vi, Vz) ..., Vr are linearly independent then we say that the dimension of Wisr and write dim(WI=r. and call B=[V1,V2)", Vr] a basis

For example some vectors in Ware: $2.\sqrt{2} = 2(1, 2) = (2, 4)$ $-\sqrt{2} = -\langle 1, 2 \rangle = \langle -1, -2 \rangle$ シレニシンニくシリア $|\cdot \sqrt{} = \langle 1, 2 \rangle$ $0.\sqrt{2} = 0 < 1, 2 > 2 < 0, 0 > = 0$

Since \vec{v} is not the zero vector, $\beta = [\vec{v}]$ is a linearly independent set And $W = \text{span}(\vec{v})$. So, β is a basis for W. Since β has 1 basis for W. Since β has 1 vector, the dimension of Wis $\dim(W) = 1$.

 E_X ; I_n \mathbb{R}^2 , let $\vec{\lambda} = \langle J_0 \rangle$, $\vec{J} = \langle g_1 \rangle$ We already know B=[i,j]is a basis for all of R², that is i, j are linearly independent and Span(i,j)= R² because any vector $\vec{V} = \langle \alpha, b \rangle = \alpha \vec{\lambda} + b \vec{j}$. bi $\sqrt{1-n} \vec{v} = \langle a, b \rangle = a\vec{i} + b\vec{j}$ So, R² is a Subspace of itself. And $dim(IR^2) = Z$ because the basis B has 2 vectors init.

$$\frac{Def}{W} = \text{span}(\vec{\sigma}) = \{\vec{c}, \vec{\sigma}\} = \{\vec{\sigma}\}$$

$$\text{This is called the } \frac{\text{trivial subspace}}{\text{Subspace}}$$

$$\text{It has no basis, however we}$$

$$\text{just define the dimension to be 0,}$$

$$\frac{Ex}{Dn} R^2 = \frac{\vec{\sigma}}{\vec{\sigma}} = \{\vec{\sigma}\}$$

$$\text{dim}(w) = 0$$

All subspaces of
$$IR^2$$

dimension basis of r
vectors
0 no basis
1 V_1
2 V_1 , V_2
 V_1 , V_2
 V_1 , V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2
 V_2
 V_1
 V_2
 V_2

Subspaces	s in \mathbb{R}^3	picture of	k
dimension	basis of r linearly indep. vectors	span of basis	description
0	no basis		point at origin
			line through the origin
2	V_1 , V_2	V2 V2 V	a plane through the origin that V, V2 lie on
3	$ \begin{array}{ccc} -1 & -1 & -1 \\ V_{1} & V_{2} & V_{3} \end{array} $	VI VI VZ VZ	all of IR ³

subspace theorem Homogeneous Let W be a subset of IR" Then W is a subspace if and only if W consists of all vectors $\vec{\nabla} = \langle x_1, x_2, ..., x_n \rangle$ that solve a humogeneous system of linear equations $\alpha_{11} \chi_{1} + \alpha_{12} \chi_{2} + \dots + \alpha_{1n} \chi_{n} = 0$ $\alpha_{z_1} \times_1 + \alpha_{z_2} \times_2 + \dots + \alpha_{z_n} \times_n = 0$ $\alpha_{m_1}X_1 + \alpha_{m_2}X_2 + \dots + \alpha_{m_n}X_n = 0$ humugeneous means = 0 on all equations

Ex: In IR³, let

$$W = \{\langle x, y, z \rangle \mid z = 0 \}$$
homogeneous
linear system
W consists
of all the
vectors in
the
xy-plane.
Let's find a basis that spans W.
Suppose \vec{v} is in W.
Then,
 $\vec{v} = \langle x, y, 0 \rangle = \langle x, 0, 0 \rangle + \langle 0, y, 0 \rangle$
 $= x \vec{i} + y \vec{j}$

So, $W = span(\vec{\lambda}, j)$. Are z, j linearly independent? Consider $c_1 \vec{\lambda} + c_2 \vec{j} = \vec{0}$ $C_{1}(\zeta_{1},0,0) + C_{2}(\zeta_{0},0) = \langle 0,0,0 \rangle$ This becomes Which gives $\langle \circ, \circ \rangle + \langle \circ, c_2, \circ \rangle = \langle \circ, \circ, \circ \rangle$ $\langle c_1, c_2, 0 \rangle = \langle 0, 0, 0 \rangle$ Thus, $c_1 = 0, c_2 = 0$. So the only solution to $C_1 + C_2 = 0$ $is c_1 = 0, c_2 = 0.$ Thus, $\overline{\lambda}, \overline{j}$ are linearly independent. So, B=[i,j] is a basis

For W. has dimension 2 Thus, W Bhus 2 vectors because in it.