$Math 2550-01$
9/9/24 Math ²⁵⁵⁰ - $O\mid$ 9/9/24

I'm redoing Topic ^G and after on the website. I'm redoing Topic 6 and
after on the website.
Both notes and HW
I'm Keeping the old way I
did there later topics
at the bottom of the
website, but we won't use them.
website, but we won't use them. after on the website.
Both notes and HW I'm keeping the old way did these later topics \pm \vert at the bottom of the them. website, but we won't use

Ex: Let
$$
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
$$
.

\nRecall $T_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

\nThen,

\n
$$
T_2 A = \frac{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}}{\begin{pmatrix} 2 \times 2 & 2 \times 2 \\ 5 \text{ and } 2 \end{pmatrix}}
$$
\n
$$
= \frac{\begin{pmatrix} (1 & 0)^t \begin{pmatrix} 1 \\ 3 \end{pmatrix} & (1 & 0)^t \begin{pmatrix} 2 \\ 4 \end{pmatrix}}{\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} & (0 & 1)^t \begin{pmatrix} 2 \\ 4 \end{pmatrix}}}{\begin{pmatrix} 1 + 0.3 & 1.2 + 0.4 \\ 0.1 + 1.3 & 0.2 + 1.4 \end{pmatrix}}
$$

$$
= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A
$$

So, $I_2 A = A$.
What about AI_2 ?

$$
AI_2 = \frac{\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}{\begin{pmatrix} 2 \times 2 & 2 \times 2 \\ 1 & 1 \end{pmatrix}}
$$

$$
= \begin{pmatrix} 1.1 + 2.0 & 1.0 + 2.1 \\ 3.1 + 4.0 & 3.0 + 4.1 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A
$$
Thus, $AI_2 = A$ and $I_2 A = A$

$$
\frac{EX: Let}{\beta = \begin{pmatrix} 3 & 4 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}} \xrightarrow{4} \frac{3 \times 2}{\text{matrix}}
$$
\n
$$
\frac{Recall}{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
\nThen,
\n
$$
\frac{T_3}{3}B = \frac{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}}{\frac{3 \times 3}{\text{matrix}} \begin{pmatrix} 3 \times 2 \\ 5 \times 2 \end{pmatrix}}
$$
\n
$$
= \begin{pmatrix} (1 & 0 & 0) \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} & (1 & 0 & 0) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \\ (0 & 1 & 0) \cdot \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix} & (0 & 1 & 0) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \\ (0 & 0 & 1) \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} & (0 & 0 & 1) \cdot \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \end{pmatrix}
$$

$$
=\begin{pmatrix}1&2\\3&4\\5&6\end{pmatrix} = B.
$$

So, $I_3B = B$.
What about BE_3 ,

$$
BI_3 = \begin{pmatrix}1&2\\3&4\\5&6\end{pmatrix} \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix} + \begin{pmatrix}0&0&0\\0&0&1\end{pmatrix}
$$

However,

$$
BT_2 = \begin{pmatrix}1&2\\3&4\\5&6\end{pmatrix} \begin{pmatrix}1&0\\0&1\end{pmatrix} = \begin{pmatrix}1&2\\3&4\\5&6\end{pmatrix} = B
$$

So, $BL_2 = B$.

Algebraic properties of matrices Let ^A , B, properties of n
C be matrices. Let d $\frac{1}{\sqrt{2}}$ be matrices.
be real numbers. fwe Then the following are true of (where we assume the sizes the matrices are such that the formulas are defined) : $(1) A+B = B+A$ (2) A + (B + c) = (A + B) + C is not in this
Iist. $\begin{array}{ll} \textcircled{3} & \textup{A}(BC) = (AB)C \\ \textcircled{4} & \textup{A}(B+C) = AB+AC \end{array}$ Then the following are true

(where we assume the sizes of

the matrices are such that

the formulas are defined):

(i) A + B = B + A

(2) A + (B + C) = (A + B) + C

(3) A (B C) = (A B) C

(3) A (B + C) = A B + A C

(5) ($T + 15$ not $G(B+C)A = BA+CA$ always \circ A(B-c) = AB-AC true & (B- $C) A = B A - C A$ (8) d $(B+C) = \alpha B + \alpha C$

 $\textcircled{1} \alpha \textcircled{1} \beta - \textcirclearrow{1} = \alpha \beta \alpha$ C (v) $(\alpha + \beta)A = \alpha A + \beta A$ \circledR (a- β) A = α A - β A (z) α (β A) = $(\alpha \beta)$ A $(B) \propto (AB) = (\alpha A)B = A(\alpha B)$ (y) $(A^{\mathsf{T}})^{\mathsf{T}}=A$ $(S) (A + B)^{T} = A^{T} + B^{T}$ (6) $(A B)^{\top} = A^{\top} - B^{\top}$ (A) (A) ^T = A A ^T order
changes $(B) (AB)^T = B^T A^T A$ $\begin{array}{lll} \textcircled{18}\textcircled{14B})' = & \text{B}' \text{A} \end{array}$ t her $I_m A = A$ and $A I_n = A$.

(20) If A is mxn, then (20 If A is mxn, then
 $A-A = O_{m \times n}$

and
 $A + O_{m \times n} = O_{m \times n} + A = A$.

Let's prove (5) $(A+B)^{T} = A^{T} + B^{T}$

when A and B are both 2x2

Let
 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$. $A-A = O_{m \times n}$ Let's prove $(\overline{S})(A+B)^{T} = A^{T} + B^{T}$ when ^A and ^B are both 2x2 Let $A =$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B =$ $\begin{pmatrix} e & f \\ g & h \end{pmatrix}$. Then the LHS gives $(A+B)^{T} =$ $\left(\begin{array}{cc} \alpha & b \ c & d \end{array}\right)+\begin{pmatrix} e & f \ g & h \end{pmatrix}$

$$
= \frac{\left(\frac{a+e}{c+g}\frac{b+f}{d+h}\right)^{T}}{\frac{(c+g}{b+f}\frac{c+g}{d+h})}
$$
\n
$$
= \frac{\left(\frac{a+e}{b+f}\frac{c+g}{d+h}\right)}{\left(\frac{b}{b+f}\frac{c}{d}\right)^{T} + \left(\frac{e}{g}f\right)^{T}}
$$
\n
$$
= \frac{a}{b}\frac{c}{d} + \frac{e}{f}\frac{g}{h}
$$
\n
$$
= \frac{a+e}{b+f}\frac{c+g}{d+h}
$$
\nThus, $(A+B)^{T} = A^{T} + B^{T}$

(A ⁺ B) $T = A^T + B^T.$

$$
\frac{Def: A linear equation in the\nnvariable x_1, x_2, ..., x_n is\nan equation of the form\n
$$
\frac{a_1x_1 + a_2x_2 + \dots + a_nx_n = b}{a_1x_1 + a_2x_2 + \dots + a_nx_n = b} (*)
$$
\nwhere $a_1, a_2, ..., a_n$ is are
\nconstant real numbers.
\nThe solution space of $(*)$
\n
$$
\frac{a_1x_1 + a_2x_2 + \dots + a_nx_n}{a_1x_1 + a_2x_2 + \dots + a_nx_n}
$$
\n
$$
\frac{a_1x_1 + a_2x_2 + \dots + a_nx_n}{a_1x_1 + a_2x_2 + \dots + a_nx_n}
$$
$$

Ex: Consider $x + y - 2z = 3$ or $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ In Calculus you learn this is the equation ot a plane in 3d points in the solution Sume are: Space $(x,y,z) = (1,0,1)$ g $(2,1,0)$ g $(0, 0, -\frac{3}{2})$ 9 a = 0

Some linear equations! $2x - \frac{1}{2}y + z - 3w + t = 2$ X_{1} $-2x_2 + x_3 + 100x_4 = 6$ Some linear equations!
 $2x - \frac{1}{2}y + z - 3w + \pm z$
 $x_1 - 2x_2 + x_3 + 100x_4$

Some non-linear equations
 $2x^2 + y = 6$
 $5x + \sqrt{y} + z = 10$
 $z^2 = x$

Some non-linear equations :

