Math 2550-01 9/9/24

I'm redoing Topic 6 and after on the website. Both notes and HW I'm Keeping the old way I did these later topics at the bottom of the website, but we won't use them.

$$E_{X:} \quad \text{Let} \quad A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

$$Recall \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$Then,$$

$$I_2 A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$Z \times 2 \quad 2 \times 2$$

$$I \quad \sum_{\text{answer is } 2 \times 2}$$

$$I \quad \sum_{\text{answer is } 2 \times 2}$$

$$= \begin{pmatrix} (1 & 0) \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} & (1 & 0) \cdot \begin{pmatrix} 2 \\ 4 \end{pmatrix} \\ (0 & 1) \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} & (0 & 1) \cdot \begin{pmatrix} 2 \\ 4 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 0 \cdot 3 & 1 \cdot 2 + 0 \cdot 4 \\ 0 \cdot 1 + 1 \cdot 3 & 0 \cdot 2 + 1 \cdot 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$$

So, $I_2 A = A$.
What about $A I_2$?
 $A I_2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $2 \times 2 & 2 \times 2$
answer is 2×2
 $1 \cdot 1 + 2 \cdot 0 \quad 1 \cdot 0 + 2 \cdot 1$
 $3 \cdot 1 + 4 \cdot 0 \quad 3 \cdot 0 + 4 \cdot 1$
 $= \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = A$
Thus, $A I_2 = A$ and $I_2 A = A$

Ex: Let

$$B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \qquad \text{matrix}$$
Recall

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Then,

$$I_{3} B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ 0 & 1 & 0 \\ 5 \\ (0 & 1 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 6 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (1 & 0 & 0) \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 6 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} (1 & 0 & 0) \\ (0 & 1 & 0) \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 5 \end{pmatrix} (0 & 1 & 0) \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = B.$$

So, $I_3 B = B.$
What about BI_3 ?
 $BI_3 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $BI_3 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
However,
 $BI_2 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} = B$
So, $BI_2 = B.$

Algebraic properties of matrices Let A, B, C be matrices. Let X, B be real numbers. Then the following are true (where we assume the sizes of the matrices are such that the formulas are defined): Note (I) A + B = B + A2 A + (B + c) = (A + B) + CAB=BA is not (3) A(BC) = (AB)Cin this list. $(\underline{A} (B+C) = AB + AC)$ TH'S Not $\mathfrak{S}(B+C)A = BA+CA$ always tije (6) A(B-C) = AB-AC (B-C)A = BA - CA $(8) \times (B+C) = \times B + \wedge C$

 $(9) \times (B-C) = \times B - \wedge C$ (10) (x+B)A= xA+BA $(\mathbf{A} - \mathbf{B})\mathbf{A} = \mathbf{A}\mathbf{A} - \mathbf{B}\mathbf{A}$ $(12) \times (\beta A) = (\alpha \beta) A$ $(13) \land (AB) = (\land A)B = A(\land B)$ $(14)(A^{T})^{T} = A$ $(IS)(A+B)^{T} = A^{T} + B^{T}$ $(6) (A-B)^{\mathsf{T}} = A^{\mathsf{T}} - B^{\mathsf{T}}$ $(\mathbf{A} \times \mathbf{A})^{\mathsf{T}} = \mathbf{A} \times \mathbf{A}^{\mathsf{T}}$ order to changes $(18)(AB)^{T} = B^{T}A^{T} +$ (19) If A is mxn, then $T_m A = A$ and $AT_n = A$.

(20) If A is mxn, then $A - A = O_{m \times n}$ and $A + O_{m \times n} = O_{m \times n} + A = A.$ HHHHHHHLet's prove $(5)(A+B)^T = A^T + B^T$ when A and B are both 2x2 Let $(a \ b)$ and $B = (e \ f)$. $A = (c \ d)$ and $B = (g \ h)$. Then the LHS gives $(A+B)^{T} = \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} \right)^{T}$

$$= \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}^{T}$$

$$= \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix}$$

$$Also, the RHS gives$$

$$A^{T} + B^{T} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{T} + \begin{pmatrix} e & f \\ g & h \end{pmatrix}^{T}$$

$$= \begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} e & g \\ f & h \end{pmatrix}$$

$$= \begin{pmatrix} a+e & c+g \\ b+f & d+h \end{pmatrix}$$

Thus $(A+B)^{T} = A^{T} + B^{T}$.

Def: A linear equation in the
n variables
$$x_{1,3}x_{2,3}\dots, x_n$$
 is
an equation of the form
 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$ (*)
where $a_{1,3}a_{2,3}\dots, a_{n,3}b$ are
constant real numbers.
The solution space of (*)
(varists of all $(x_{1,3}x_{2,3}\dots, x_n)$
that solve (*).

EX: Consider X + Y - 2Z = 3 4 linear X + Y - 2Z = 3 4 3 variables In Calculus you learn this is the equation of a plane in 3d points in the solution SUME are: Space (x,y,z) = (1,0,-1), (2,1,0), $(0,0)^{-\frac{3}{2}})$

Some linear equations: 2x- = y+ z - 3w+ t = 2 $X_1 - 2X_2 + X_3 + 100 X_4 = 6$

Jome non-linear equations:

