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Abstract: Hydropower release decision making relies on multisource information, such as climate conditions, downstream water quality,
inflow and storage, regulation and engineering constraints, and so on. The decision tree (DT) method is one of the commonly used techniques
to simulate reservoir operation and release strategies because of its simplicity and effectiveness. However, the performances and simulation
accuracy vary among different DT models due to many structures and splitting rules associated with each DT model. In this study, we propose
a dynamic merge technique (DMerge), which adopts a concept from particle swarm optimization, to postprocess outputs from different
DT models with the purpose of increasing the simulation accuracy and producing a model ensemble with dynamically changing weights
throughout the validation phase. A case study of Shasta Lake in northern California is presented, where the daily hydropower releases are
predicted and compared using the DMerge, AdaBoost DT, random forest, and extremely randomized trees methods. Results show that the
DMerge method has the best statistics compared to other popular DT algorithms. Furthermore, scenario tests were carried out to analyze the
sensitivity to model inputs (i.e., hydrological condition, reservoir storage and regulation, climate phenomenon indices, and water quality) with
respect to explaining the variability of hydropower releases. According to the results, we found that the hydropower releases are a complex
decision-making process and water quality and climate conditions could play an even more significant role than both hydrological forcing and
system states in our case study. The proposed DMerge method is a robust and efficient technique in solving water-energy prediction and
simulation problems, and it is suitable for joint use with other data-driven approaches. DOI: 10.1061/(ASCE)WR.1943-5452.0001146.
© 2019 American Society of Civil Engineers.
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Introduction

Hydropower is an important renewable and clean energy resource
produced mostly within reservoir systems or by run-of-river dams.
In California, hydroelectric generation provides about 15% of all
electricity generation (CDWR 2017). Hydropower is a flexible en-
ergy source to provide power during peak loads and extra spinning
reserves (Chang et al. 2013; Kaygusuz 2004; Li et al. 2015; Tarroja
et al. 2014), which is an extra power generating capacity being

available by increasing the power output of assets that are already
connected to the electric grid. Hydropower is also more stable than
solar and wind power, because it is not vulnerable to day-night
shifts and abrupt changes in weather conditions (CDWR 2017;
Yang 2015; Yang et al. 2017a). In many developing countries, such
as China, hydropower resources have been under rapid exploitation
in recent decades (Cheng et al. 2017; Ji et al. 2015; Li et al. 2014,
2015). Examples include the recently built Xiluodu hydropower
dam, Ertan hydropower dam, and so on, and existing constructions
of hydropower facilities along the Jinsha River, Yalong River, and
Yangtze River upstream in southwest China (Zhang et al. 2018).
Hydropower production depends on many factors, which include
(1) local hydrological conditions and available water, such as pre-
cipitation, evaporation, and upstream inflows to reservoirs; (2) res-
ervoir storage levels (i.e., the head difference between forebay
water level and tailwater), engineering constraints, and system op-
erating rules; (3) large-scale climatic conditions that influence both
demand and supply of water and electrical power; and (4) water
quality parameters for the benefits of the aquatic ecosystem and
survival of fish species downstream from hydropower facilities,
such as water temperature, turbidity, and dissolved oxygen (DOE
2014a, b). Modeling hydropower production and turbine water
releases from reservoirs is challenging due to the complexity and
variety of the decision variables associated with the generation and
human decision-making processes (Conklin et al. 2007; Kaygusuz
2004; Madani 2011). How to better simulate hydropower releases
and how to include as many relevant decision variables as possible
in the modeling framework are two research questions that are of
interest to both scientists and operators.

In order to mathematically model the reservoir decision-
making process, one challenge associated with the physical and
mass-balance model is the lack of capability of utilizing ancillary
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information to predict or simulate hydropower release schedules.
For example, under certain circumstances, large-scale climatic phe-
nomenon (e.g., atmospheric river events) are driving the local
hydrology and inflow amount to reservoirs over the western US.
Large-scale climatic conditions, such as Pacific decadal oscillation
(PDO) (Mantua and Hare 2002) and El Niño southern oscillation
(ENSO) (Cane 2005), are known to impact precipitation variability
and thus water availability for our study areas. These factors impact
hydropower production potential by changing local dry-wet condi-
tions, extreme precipitation events, timing of spring snowmelt, and
demand for electrical power (Barlow et al. 2001; Cook et al. 2007;
Dettinger et al. 2011; Namias and Cayan 1981; Redmond and Koch
1991). Furthermore, regulations and constraints on water quality
may also be as influential as other decision variables for discharge
simulation, and physical-based reservoir simulation models lack
the ability to simultaneously use different types of decision varia-
bles and mimic the fuzzy reservoir release strategies. From a stat-
istical point of view, the sensitivity evaluation of model inputs is
also useful to help operators to extract key information from a com-
plex set of data records and to identify the important variables that
possess the high predictability of reservoir release patterns.

Hydropower scheduling decision making (i.e., the amount of
turbine releases at a certain time) is a complex process because it
depends on multiple decision factors, which are beyond what is
required for reservoir outflow simulation. Most of the factors do not
have a direct physical relationship with the hydropower generation
governing law (i.e., Production ¼ ρgQΔh, where ρ = density of
water; g = gravity constant; Q = turbine water release rate; and
Δh = water static head difference between forebay and tailwater
elevations). For example, reservoir storage level and Δh together
decide how much gravity potential is needed for hydropower pro-
duction. System constraints, flood control, and water supply oper-
ating rules regulate how much water can be used for hydropower
production, including the design elements of the hydropower plant
itself.

To better simulate hydropower releases and take advantage of
the multisource information available to operators, artificial intel-
ligence (AI) and data-mining (DM) techniques have gained much
popularity in the fields of reservoir operation and system decision
making during the last decade. The AI and DM tools mainly focus
on deriving a simulation model for reservoir release, evaluating the
existing operation rules, or predicting future flows as a regression
model, rather than optimizing the system yield (storage or dis-
charge) (Ashaary et al. 2015; Castelletti et al. 2010; Chang et al.
2016; Cheng et al. 2015; Galelli and Castelletti 2013; Kumar et al.
2013a; Shamim et al. 2016; Yang et al. 2017a). Among different
forms of AI and DMmethods, the decision tree (DT) method is one
of the most popular techniques that is commonly used in reservoir
discharge simulation (Zagona et al. 2001; Bessler et al. 2003;
Cheng et al. 2008; Sattari et al. 2012; Tsai et al. 2012; Wei 2012;
Zhang et al. 2015; Yang et al. 2016; Kim et al. 2019). The reason
is that the actual reservoir discharge operation is a multistaged
decision-making process, which shares a similar logic used in DT
methods, i.e., the true or false conditional Boolean logic. For
example, under normal operations, dam operators typically use
current storage level and rule curves (i.e., the relationship be-
tween discharge and storage) to decide whether to release a certain
amount of water from reservoirs (Raso et al. 2014; Zagona et al.
2001). Dam operators also take certain control actions based on
whether incoming flows from upper streams exceed a certain level
that could result in flooding. Theoretically, those control actions
mentioned above can be well interpreted by properly designed
if-then logic and corresponding thresholds using storage levels and

incoming streamflow as decision variables (Schwanenberg et al.
2014, 2015).

In the literature, there are a number of studies that focus on ap-
plying DT methods to reservoir discharge simulation. For example,
Wei (2012) employed two standard DT algorithms, namely, the
classification and regression trees (CART) and a C5.0 decision tree
algorithm, for a reservoir discharge simulation problem during ty-
phoon events over the Taiwan area. Sattari et al. (2012) tested the
if-then logic from the DT method with multiple reservoir release
data sets in Iran and concluded that the decision tree techniques are
suitable for determining reservoir operating rules for irrigation.
Yang et al. (2016) carried out a large simulation of reservoir
discharge using a CART algorithm and a random forest (RF) algo-
rithm, and they achieved a high simulation accuracy when mimick-
ing reservoir releases. However, when applying DT methods to the
hydropower release simulation, different models are not always in
agreement with each other with respect to the overall performance
along the prediction horizon, which is a common phenomenon
for many statistical and AI models. Different DT methods, for
example, the AdaBoost tree methods (Banfield et al. 2007; Bauer
and Kohavi 1999; Breiman 1996; Dietterich 2000a, b), RF algo-
rithm (Breiman 2001), and extremely randomized trees algorithm
(Geurts et al. 2006, 2007; Marée et al. 2007), use various mecha-
nisms of adding randomness and constructing ensemble candidates
(i.e., whether the candidate trees are required to have complex or
simple structures). As a result, different DT models will perform dif-
ferently on the same problem or data set. A single DT model’s per-
formance could also vary during the test period since the predictors
used in the test data set are treated as independent data points. There-
fore, to select a single DT model that consistently performs well
during the test period is a difficult task due to the fact that model
performances are not stable during the entire test period and the
model structures are not consistent compared among different DT
models. The research question, therefore, becomes how to improve
the prediction accuracy utilizing the outputs of different DT models
and the observation data that gradually become available and up to
date as time goes on.

To address the above research and application question, in this
study, we propose to use data-driven approaches to fuse differ-
ent types of information required by hydropower release decision
making and combine the outputs from many many decision tree
models for better accuracy. Traditionally, an ensemble of the out-
puts from many models is constructed by assigning equal weights
to different models’ outputs, also termed the simple model average
(SMA) (Hagedorn et al. 2005). In this paper, we introduce a non-
equal averaging technique to postprocess different DT model out-
puts, termed the dynamic merging technique (DMerge). The
DMerge approach identifies the changes in participating models’
performances through time and significantly reduces the biases
in the final ensemble. Different from the SMAmethod, the philoso-
phy used in the DMerge approach is to combine two sources of
information to determine the model ensemble weights at the next
time step when the observations are unknown. The first source of
information is the model performances at the current time step (as-
suming observation data become available and the previous time
step prediction becomes historical). The second source of informa-
tion is the general historical model performances in all previous
time steps. This idea is inspired by the heuristic searching algorithm
in the field of optimization, i.e., the mechanics used in particle
swarm optimization (PSO) (Eberhart and Kennedy 1995;
Kennedy 2011; Kennedy et al. 2001). In PSO algorithms, the di-
rection of a particle for the next time step is determined based on
the current best and historical best locations of the moving par-
ticles. In the DMerge approach, we use this similar idea to weight
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model candidates for the next time step based on the current and
historical best models’ performances. The advantage of the
DMerge technique is that it can efficiently use any observation data,
which continuously become available through the prediction hori-
zon (test period), and it dynamically incorporates this information
to enhance the performance of the final ensemble.

Specifically, our study’s goals are to (1) simulate hydropower re-
leases based on a large variety of decision variables besides hydro-
logical information and state variables and (2) demonstrate the
superiority of the proposed DMerge method with regards to the
accuracy of deriving more accurate hydropower release simulations
compared to any single decision tree method. To achieve these goals,
a case study is carried out to simulate the hydropower releases from
Shasta Lake located in northern California, which is the headwater
reservoir for California’s Central Valley Project. The model inputs
include 26 decision variables: 3 hydrological variables (i.e., precipita-
tion, inflow, evaporation); 2 state and regulation variables (i.e., current
storage volume and the conservative pool elevation above storage
elevation); 18 climate phenomenon indicators [i.e., ENSO, PDO, and
arctic oscillation (AO)]; and 3 water quality indicators (i.e., the water
temperature, dissolved oxygen, and water turbidity measured down-
stream from the reservoir). The results from the DMerge method are
compared against several popular decision tree methods and the stan-
dard SMA method. Both statistical and trajectory comparisons are
carried out for our case study. The results show that the proposed
DMerge approach has improved performance over the SMA method,
as well as any single DT model. A sensitivity analysis is also carried
out to test the importance of different input variables in explaining the
variability of hydropower releases.

The specific objectives and contributions of this study are
(1) introducing a new predictive approach, termed DMerge, which
is capable of using updated observation data to select the best
ensemble members, and capable of producing a more consistent
and reliable prediction than any single DT model; (2) comparing
different DT methods in support of hydropower simulation using
multiple information sources; and (3) evaluating the importance of
different model inputs, particularly water quality and climate infor-
mation, with respect to the predictability of hydropower releases.
Though this study only focuses on using DT methods in hydro-
power scheduling problems, the proposed DMerge could be univer-
sally applicable to combine other AI and DM approaches.

In the rest of the paper, the “Methodology” section summarizes
the methodologies of individual decision trees and the proposed
DMerge technique. The “Study Site, Data, and Model Settings”
section introduces the study site, data, and model setting. The re-
sults are shown in the “Results” section. The “Discussion” section
provides discussions and limitations based on our experiments.
Major findings and our conclusion are summarized in the “Conclu-
sion” section.

Methodology

AdaBoost Decision Tree

Boosting algorithms have been introduced as a class of algorithms
that convert a weak learning predictor with performance close to
random guessing into a strong predictor (Freund and Schapire
1996). In other words, boosting techniques combine multiple pre-
dictors of the same type and weight the models’ contribution ac-
cording to their performance to achieve better accuracy (Drucker
1997; Freund and Schapire 1997). Among the boosting algorithms,
the AdaBoost algorithm has gained a great deal of attention in
the field of computer science. The AdaBoost algorithm adapts

the contribution weighting of each predictor using the error term,
which is produced by each weak learning algorithm (Freund and
Schapire 1997; Wu et al. 2004). The AdaBoost algorithm also ap-
plies weights to training examples that emphasize the hard-to-
predict points in the input population (Dietterich 2000a, b). At the
beginning of the model training process, the training points have
equal weights. During the model training process, the AdaBoost
algorithm dynamically updates the training weights according to
the performance of the base learning algorithms. The joint use
of the AdaBoost algorithm and DT methods, i.e., AdaBoost trees
(Dietterich 2000a, b; Drucker 1997; Freund 1995), has already
been applied in various fields, e.g., economics (Alfaro Cortés et al.
2007; Kim and Upneja 2014), biology (Che et al. 2011), remote
sensing (Briem et al. 2002; Chan and Paelinckx 2008), and physics
(Roe et al. 2005). However, application of the AdaBoost algorithm
in the fields of hydrology and water resources management is rarely
reported.

Random Forest

The random forest (RF) algorithm (Breiman 2001) is a nonparamet-
ric, white-box ensemble tree method based on the standard CART
algorithm (Breiman et al. 1984) and bagging tree algorithm
(Breiman 1996; Tao et al. 2018). The RF algorithm builds an en-
semble with ensemble members consisting of a collection of tree-
structured predictors. These tree-structured predictors depend on
independent and randomly sampled vectors with the same proba-
bility distribution for all the trees (Breiman 2001). The general pro-
cedure used in the RF algorithm starts at a random selection of
predictors and a split of a bootstrap data set using a user-defined
splitting criterion, such as the root-mean-square error, mean-square
error, or Gini diversity index to maximize the homogeneity (or
minimize the summed error rates) of splitting nodes. A similar
splitting procedure is performed for each of the partitioned subsets
until a user-defined stopping criterion is met. This procedure is re-
peated using randomly selected predictors and multiple ensemble
candidate trees are built using different combinations of predictors.
According to Liaw and Wiener (2002), a RF model includes the
following key features: (1) all of the data are bootstrapped, (2) for
each bootstrapped sample, an unpruned CART model is built using
randomly selected decision variables as the best split criterion, and
(3) the prediction is obtained by aggregating the prediction of all
the trees built on different bootstrapped data. There have been
numerous successful applications of the RF for reservoir opera-
tion (Bai et al. 2016; He et al. 2016; Kumar et al. 2013a, b; Li
et al. 2010; Wei and Hsu 2009), and its performances have been
proven to be superior to other DT methods, such as CART, ID3
(Quinlan 1986), ID4.5, and bagging tree (Quinlan 1996; Tao et al.
2018).

Extremely Randomized Trees

Introducing randomness in both the predictors and training data
selection (bootstrap) allows the tree-growing process to enhance
the model performances as shown in the RF algorithm (Breiman
2001). In recent years, a new way of adding randomness to DT
methods has been developed by Geurts et al. (2006, 2007). They
entitled the new algorithm extremely randomized trees (Extra-
Trees). The Extra-Trees algorithm is similar to RF but differs in
the following two aspects: (1) the Extra-Trees algorithm uses all
of the training data during the tree-growing process instead of
constructing different subsets of training data sets for each ensem-
ble candidate and (2) Extra-Trees employs both randomly selected
predictors and predictor values when splitting the training data,
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whereas the RF methods find the best split (i.e., select the optimal
predictor and predictor values by minimizing a classification func-
tion) among random subsets of variables. After a number of test
splits on randomly selected predictor and predictor values, the split
with the best skill scores is used for the next iteration (Ernst et al.
2005). Geurts et al. (2006) demonstrated that the Extra-Trees algo-
rithm results are able to significantly decrease the final ensemble
tree variance, but slightly increase the bias. Furthermore, Geurts
et al. (2006) have also shown that Extra-Trees is able to eliminate
variance with acceptable biases after properly adjusting the ran-
domness level in choosing predictors and predictor values in the
model setting.

Dynamic Merging Method

Inspired by the concept of particle swarm optimization (Eberhart
and Kennedy 1995; Kennedy 2011; Shi 2001), a dynamic merging
(DMerge) technique is proposed and demonstrated in Fig. 1 and
Eq. (2). The core concept of the DMerge method is to use nonequal
weights to dynamically create a single model averaging result with
two specific models: one is the current best-performing model at
time step t, and another is the historical best-performing model over
the horizon from 0 to (t–1). As shown in Eq. (2), using the DMerge
method, the prediction value for time step t consists of two parts.
The first part is the prediction value from the current best-
performing model at time step (t–1), which is weighted by a
user-defined coefficient C1. The current best-performing model

is defined as the model with the lowest bias between the model
prediction and the observation at time step (t–1). The second part
is defined as the prediction value from the historical best-
performing model over the horizon from 0 to (t–1) weighted by
a coefficient C2 [Eq. (2)]. Note that the historical best-performing
model [the second part in Eq. (2)] is not necessarily identical to the
current best-performing model [the first part in Eq. (2)]. For exam-
ple, in Fig. 1, at time step t ¼ 0, both the current and historical best
models are Model 2, and the DMerge prediction will be identical to
the Model 2 result at the next time step (t ¼ 1). At time step t ¼ 1

we predict a value at t ¼ 2; the DMerge method is identical to sim-
ple model averaging as no historical information has been recorded.
At time step t ¼ 2, while trying to predict the value at time step
t ¼ 3, Model 3 becomes both the historical best and current best
model, and DMerge is identical to the Model 3 prediction result at
the next time step (t ¼ 3). At time step t ¼ 3 we want to obtain the
prediction value for time step t ¼ 4; the current best-performing
model becomes Model 1, and both Model 1 and Model 3 results
at the next time step (t ¼ 4) are used to construct the DMerge re-
sult. A similar process continues at each prediction step by re-
evaluating which model(s) are the current best and historical
best-performing model(s) and constructing a weighted prediction
value for the next time step. A generalized mathematical expression
is given in the following Eqs. (1) and (2) for SMA and DMerge,
respectively:

SMAt¼i ¼
P

K
1 Mjt¼i

K
; for i ¼ 1; 2; : : :N ð1Þ

DMerget¼i ¼
8<
:

P
K
1 Mjt¼i

K
; for i ¼ 1

C1 · MCurrent Bestt¼i−1 þ C2 · MHistorical Bestt¼1;2; : : : i−1 for i ¼ 2; 3; : : : ;N; andC1þ C2 ¼ 1

ð2Þ

where K = number of ensemble members; N = total time step for
the prediction horizon; Mjt¼i

= prediction value obtained from the
jth participating model for time step i; C1 and C2 = weighting fac-
tors for current and historical best-performing models, respectively.
The constraint is C1þ C2 ¼ 1.

The presented DMerge approach in Fig. 1 and Eq. (2) is based
on some existing theories and assumptions used in the field of
swarm intelligence (SI) (Eberhart and Kennedy 1995; Yang et al.
2018), in which the core concept and theory are to move particles
toward a direction regulated by two locations: one is associated
with the best fitness value so far during the search, and another
is the current best location with the highest fitness value of a given
objective function (Kennedy et al. 2001; Kennedy 2011). In the SI,
it is also assumed that all searching particles have no information of
where the global optimal is, and in our case, the observation for the
next time step (t ¼ T þ 1) always remains unknown. According
to PSO as invented by Kennedy et al. (2001), Kennedy (2011),
Eberhart and Kennedy (1995), and Shi (2001), the strategy of SI,
i.e., moving the existing particles toward a direction that is corre-
lated to the locations of current and historical best particles (i.e., the
individual with the best fitness), is proven as an effective approach

to find global optimal solutions for complex optimization prob-
lems. In other words, the direction of a particle for the next time
step is determined by both (1) the current best location among all
participating members and (2) the historical best location found
during the evolution of the population. It is worth mentioning that
at the initial prediction time step (t ¼ 0) the historical best is not
available because no prediction has been made before time step 0
(Fig. 1). Therefore, the DMerge method will have a value identical
to that of the SMA method. As time goes on (t ¼ 1; 2; 3 : : : ;
N − 1;N), the DMerge method is able to learn which predictive
model has consistently good performance over all prediction time
steps and uses this model to weight against the current best model.

Study Site, Data, and Model Settings

Study Site

Shasta Lake in northern California is selected as our case study
(Fig. 2). The Shasta Lake dam is the ninth tallest in the United
States and the biggest hydropower dam in California. The major
functionalities of the Shasta Lake dam are hydropower, irrigation,
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and water supply for the Central Valley Project in California.
The capacity of the lake is around 5.6 × 109 m3 at full pool level,
and the lake has an elevation of 325 m above sea level. The total
hydropower generation capability for the Shasta Dam is about
710 MW, which is more than 30% of the total generation capacity
of the California Central Valley Project. Besides the important role
of hydropower generation, the Shasta Dam also provides the flows
for fish migration and spawning in the Sacramento River. There are
many fish species living in Shasta Lake, such as Chinook salmon
and steelhead trout. To protect those fish populations, strict regu-
lations and hydropower releasing rules have been enforced by
federal endangered species act (ESA) from 1989 (EPA 2013b).
California state agencies have carried out water quality mon-
itoring at hydropower facilities at the Shasta Dam to monitor the
water temperature, dissolved oxygen, and water turbidity that are

required by law to stay within the tolerance limits for spawning
salmonids (DOE 2014b; EPA 2013b; FERC 2011; Kimmell and
Veil 2009; Veil et al. 1993). The selection of the study site is based
on the data availability from the publicly accessible source in Cal-
ifornia. In the California Data Exchange Center (CDEC), Shasta
Lake has the most complete set of data (Table 1) as well as the
longest data records as compared to many other reservoirs in
California.

Data

There are 26 different types of data used for model training and
validation. The selection of input variables is based on some
findings in an earlier study (Yang et al. 2017a), as well as the
correlation coefficient between raw model inputs and hydropower
releases. More justifications and discussion are provided later
in the “Input Variable Cross-Correlation” and “Limitations and
Future Work” sections of this paper. Daily hydrological data in-
cluding precipitation, lake evaporation, and inflow amounts were
retrieved from CDEC. CDEC is the official data portal for the
state and federal water resource operating agencies in California.
The daily observation on lake storage volume and the conservation
pool level for the Shasta Lake were also obtained form CDEC.
The duration of observation data is five years from January 1,
2010, to December 31, 2015. The early data before 2010 were
not used in this study due to significant missing and unreliable
records.

Also, 17 climate indices were retrieved from the National
Oceanic and Atmospheric Administration Earth System Research
Laboratory (NOAA-ESRL) that represent different climate and
atmospheric activities, including teleconnections, atmosphere,
ENSO, and the variations of the Pacific and Atlantic sea surface
temperatures. Table 1 lists detailed information about the data used
as model inputs. The model outputs are the daily hydropower
releases.

The raw data obtained are in different temporal resolutions. To
obtain daily hydropower releases, the model inputs were either
aggregated or disaggregated into a daily time step so that the model
holds a constant input-output data resolution. For instance, hourly
data were accumulated into daily, while climate information with
a monthly time step resulted in daily inputs with the same values
throughout a month. Similar ways of data handling are also
presented by Naeini et al. (2018) and Zhang et al. (2018).

Fig. 2. (Color) Location of the Shasta Dam located in northern
California. (The map of California was made with Wolfram Mathema-
tica using DEM files courtesy of webGIS.)

Fig. 1. (Color) Concept of the DMerge approach.
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Model Settings

In this study, we use the period of 2010–2013 as calibration and the
period of 2014–2015 as validation as shown in Fig. 3. The CDEC
data portal contains longer records of data back to 2007 for Shasta
Lake. However, many of the data listed in Table 2 have signifi-
cant missing and unreliable records. To test the model performance,
a short period of data would reveal the models’ capability in cap-
turing the relationships among multiple variables. In real operation
and practical uses of the proposed statistical models, it is suggested
to use a complete data set and the longest possible data records
to train a statistical model so that model performance can be
maximized.

To compare the sensitivity of model inputs, three different
test scenarios were designed, as shown in Fig. 3. The influence of
various categories of data on explaining the behaviors of model
outputs during the validation period is investigated. Scenario 1
uses all the decision variables listed in Table 1 as model inputs.

Scenario 2 intentionally removes the water quality decision varia-
bles from the model inputs. The purpose is to examine the per-
formance impact of the water quality input data. Finally, under
Scenario 3, the climate indices are further excluded from the model
inputs and only hydrological, state, and regulation variables are
used as model inputs. The purpose of Scenario 3 is to test the im-
pacts of climate indices on hydropower releases like the examina-
tion of water quality impacts under Scenario 2.

Under different scenarios, the decision tree models (Fig. 3) have
identical hyperparameter settings: the maximum tree depth is set to
50, number of estimators for ensemble trees is set to 1,000 (which
ensures a sufficient number of learners being built), the minimum
number of data points in each leaf is set to 2, the maximum number
of features is set to the square root of the number of decision var-
iables, and the root-mean-square error is used as a splitting criterion
for the AdaBoost tree, the RF algorithm, and the ERT algorithm.
According to many default settings used with PSO algorithms,
the coefficient for the current best member [C1 in Eq. (2)] in the

Table 1. Information of selected model input data

No. Group Short name Resolution Description Source/station

1 Hydrological
condition

Inflow Daily Inflow amount CDEC/SHA
2 Precipitation Daily Point accumulated precipitation CDEC/SHA
3 Evaporation Daily Computed accumulated lake

evaporation
CDEC/SHA

4 State and
regulation

Storage Daily Measured storage volume CDEC/SHA
5 Regulation Daily Calculated water level above

reservoir conservative pool
CDEC/SHA

6 Water quality Water temperature Hourly Hourly measured water temperature
in degrees

CDEC/SHD

7 Water dissolved oxygen Hourly Hourly measured dissolved oxygen
in ml=L or ppm

CDEC/SHD

8 Water turbidity Hourly Hourly measured dissolved oxygen
in nephelometric turbidity unit
(NTU)

CDEC/SHD

9 Climate index PNA Monthly Pacific North American index NOAA Climate Prediction Center
(CPC)

10 WP Monthly Western Pacific index NOAA Climate Prediction Center
(CPC)

11 NAO Monthly North Atlantic oscillation NOAA Climate Prediction Center
(CPC)

12 SOI Monthly Southern oscillation index NOAA Climate Prediction Center
(CPC)

13 WHWP Monthly Western hemisphere warm pool Wang and Enfield (2001)
14 ONI Monthly Oceanic Nino index NOAA Climate Prediction Center

(CPC)
15 MEI Monthly Multivariate ENSO index Wolter and Timlin (1998)
16 Nino1þ 2 Monthly Extreme Eastern Tropical Pacific

SST (0–10S, 90W–80W)
CPC

17 Nino 3 Monthly Eastern Tropical Pacific SST
(5N–5S, 150W–90W)

CPC

18 Nino 34 Monthly East Central Tropical Pacific SST
(5N–5S, 170–120W)

CPC

19 Nino 4 Monthly Central Tropical Pacific SST
(5N–5S, 160E–150W)

CPC

20 PDO Monthly Pacific decadal oscillation Zhang et al. (1997)
21 TNI Monthly Indices of El Niño evolution Trenberth and Stepaniak (2001)
22 AO Monthly First leading mode from the EOF

analysis of monthly mean height
anomalies

CPC

23 QBO Monthly Quasi-biennial oscillation NCEP/NCAR Reanalysis
24 CENSO Monthly Bivariate ENSO time series Standardized SOI and standardized

Nino3.4 SST Time series
25 EPO Monthly East Pacific/North Pacific

oscillation
NOAA Climate Prediction Center
(CPC)

26 Seasonality Monthly Month of a year Calendar
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DMerge method is set to 0.7, and the coefficient for the historical
best [C2 in Eq. (2)] is set to 0.3. The coefficients are determined by
some initial tests by authors, in which the performances are stable
and optimal in the training sets. More discussion of the systematic
derivation of the coefficients will be provided in the “Limitations
and Future Work” section.

Results

Model Performances

Four types of statistical measures were selected in this study: the
correlation coefficient (CORR), the root-mean-square error (RMSE),
the Nash-Sutcliffe model efficiency coefficient (NSE) (Nash and
Sutcliffe 1970), and the Kling-Gupta efficiency (KGE) from Gupta
et al. (2009), as shown in the following Eqs. (3)–(6), respectively:

CORR ¼
P

n
i¼0ððQsim;i − Q̄sim;iÞðQobs;i − Q̄obs;iÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼0 ðQsim;i − Q̄sim;iÞ2

P
n
i¼0 ðQobs;i − Q̄obs;iÞ2

q ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

ðQsim;i −Qobs;iÞ2=n
s

ð4Þ

NSE ¼ 1 −
P

n
i¼0 ðQobs;i −Qsim;iÞ2P
n
i¼0 ðQobs;i − Q̄obs;iÞ2

ð5Þ

KGE ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − CORRÞ2 þ ð1 − σs=σoÞ2 þ ð1 − μs=μoÞ2

q
ð6Þ

where Qobs;i and Qsim;i = observed and simulated hydropower dis-
charges at time step t, respectively; Q̄obs;i and Q̄sim;i = means of the
observed and simulated values, respectively; n = total number of data
points; μs and σs = mean and standard deviation of the simulated
discharges, respectively; and μo and σo = mean and standard
deviation of the observed hydropower releases, respectively. The
KGE values range from negative infinity to 1 and a KGE value equal
to 1 suggests an ideal case in which simulation matches observation
(Gupta et al. 2009). According to Moriasi et al. (2007), for monthly

Table 2. The statistics between simulated and observed discharges using AdaBoost, RF, Extra-Trees, SMA, and DMerge under different scenarios

Models/statistics

CORR RMSE (m3=s) NSE KGE

Cal Val Cal Val Cal Val Cal Val

Scenario 1 (all inputs)
AdaBoost tree 0.998 0.951 235.905 668.021 0.995 0.872 0.940 0.902
Random forest 0.985 0.904 614.384 829.026 0.969 0.803 0.916 0.863
Extra-Trees 0.962 0.893 981.440 860.191 0.920 0.787 0.806 0.779
SMA 0.988 0.940 558.293 673.987 0.974 0.870 0.914 0.884
DMerge 0.993 0.959 436.571 551.169 0.984 0.913 0.963 0.934

Scenario 2 (hydrological, state and regulation, and climate inputs)
AdaBoost tree 0.996 0.911 299.659 870.453 0.993 0.782 0.944 0.874
Random forest 0.973 0.904 812.221 809.635 0.945 0.812 0.861 0.831
Extra-Trees 0.941 0.863 1,196.472 954.575 0.881 0.738 0.763 0.732
SMA 0.981 0.914 704.317 779.693 0.959 0.825 0.885 0.852
DMerge 0.988 0.939 555.099 650.794 0.974 0.878 0.917 0.895

Scenario 3 (hydrological and state and regulation inputs only)
AdaBoost tree 0.988 0.831 529.992 1,285.775 0.977 0.525 0.894 0.765
Random forest 0.954 0.836 1,091.366 1,192.326 0.901 0.592 0.940 0.798
Extra-Trees 0.874 0.786 1,774.608 1,333.839 0.737 0.489 0.867 0.743
SMA 0.964 0.826 1,031.162 1,238.712 0.911 0.560 0.954 0.785
DMerge 0.978 0.848 822.976 1,153.355 0.943 0.618 0.963 0.809

Note: The bolded numbers are the best statistics among all methods in calibration and validation periods, respectively.

Fig. 3. (Color) Designed scenarios and modeling structure.

© ASCE 04019072-7 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(2): 04019072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
al

if
 S

ta
te

 U
ni

v-
L

os
 A

ng
el

es
 o

n 
01

/2
3/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



simulation a KGE value or a NSE value larger than 0.50 can be con-
sidered satisfactory. In Table 2, the CORR, RMSE, NSE, and KGE
values for both calibration and validation periods are calculated and
compared using the simulation results obtained from the DT models,
the SMA method, and the proposed DMerge method under different
simulation scenarios. In Table 2, the bolded values indicate the best
statistics under each scenario and period.

According to Table 2, the DMerge method produces promising
results with the best CORR, NSE, KGE, and RMSE values when
compared to other algorithms during the validation periods. The
NSE and KGE values from DMerge are consistently higher than
0.5 under all scenarios. The AdaBoost tree algorithm demonstrates
the highest CORR, NSE, and KGE and the lowest RMSE as com-
pared to the RF and Extra-Trees algorithms during the model cal-
ibration period, whereas the performances during the validation
period are significantly worse than the DMerge. As compared
among SMA, AdaBoost tree, RF, and Extra-Trees algorithm, the
SMA method is slightly better than other individual models as
the averaging of different model outputs cancels the biases for most
of the time steps, particularly for the cases where some models are
overestimating and others are underestimating. It is worth mention-
ing that the DMerge method is able to generate even better statistics
than each individual method and the SMAmethod, and therefore, it
is believed to be the best-performing model in all validation periods
(Table 2).

Under Scenario 1, the best statistical measures are produced by
the DMerge method, which are 0.959, 0.913, and 0.934 during the
validation period for CORR, NSE, and KGE, respectively. The
worst-performing model is the Extra-Trees algorithm, of which
the CORR, NSE, and KGE values are 0.893, 0.787, and 0.779 for
CORR, NSE, and KGE during the validation period, respectively.
The SMA method is able to produce better statistical measures as
compared to the Extra-Trees method and is comparable to random
forest results. The calculated CORR, NSE, and KGE by the SMA
method are 0.940, 0.870, and 0.884, respectively. Under Scenarios
2 and 3, similar results are observed with respect to the ranks of
model performances. The ranking of model performances can be
summarized as DMerge > AdaBoost tree > SMA > RF > Extra-
Trees algorithm.

According to Table 2, the model performances shown tend to
decrease as fewer model inputs are used. For example, the CORR
value of the DMerge method decreases from 0.959 (Scenario 1) to
0.939 (Scenario 2), and finally to 0.848 (Scenario 3). The NSE
value of the DMerge method decreases from 0.913 (Scenario 1) to
0.878 (Scenario 2), and further to 0.618 (Scenario 3). The KGE
value of the DMerge method decreases from 0.934 (Scenario 1)
to 0.895 (Scenario 2), and further to 0.809 (Scenario 3). Similar
decreasing patterns are shown in the calculated statistics (Table 2)
from the AdaBoost tree, RF, and Extra-Trees algorithms and the
SMA method. The model performance rankings are the same un-
der Scenarios 1 and 2 (DMerge > AdaBoost tree > SMA > RF >
Extra-Trees algorithms), while under Scenario 3 the AdaBoost tree,
RF, and Extra-Trees algorithms show similar results and the model
ranking varies slightly with respect to different statistical measures.

Fig. 4 shows the comparison between simulated and observed
daily hydropower discharge under different scenarios during the
validation period (January 1, 2014, to December 31, 2015). In this
figure, the observations are shown as black dots, and the red, blue,
pink, yellow, and green lines represent the simulated discharges
by AdaBoost, RF, Extra-Trees, SMA, and the proposed DMerge
method, respectively. According to Fig. 4(a), all algorithms were
able to produce reasonable simulations with a good match to
observation. However, during February and March of 2015 in
Fig. 4(a), only the DMerge and AdaBoost algorithms were able to

capture the sudden hydropower reduction, while other models
overestimated the daily hydropower releases during this period.
Another supporting case is shown in Fig. 4(a) during the period
between April and May of 2015, where the high hydropower re-
leases from Shasta Lake were significantly underestimated by the
RF, Extra-Trees, and SMA methods.

Note that in Fig. 4(a), starting around June 2015, the AdaBoost
tree algorithm started to overestimate the hydropower releases,
while the proposed DMerge method could identify that the Ada-
Boost method was no longer a current best algorithm and the results
from the other two methods become relatively better than those de-
rived by the AdaBoost method. Similar cases also occurred in the
winter of 2015 [Fig. 4(a)]. According to Fig. 4(a), during the winter
of 2015, RF and Extra-Trees algorithm began to overestimate the
hydropower releases, while the DMerge and AdaBoost tree meth-
ods demonstrated a good match with respect to observations. Those
above-mentioned cases in Fig. 4(a) are direct evidence that the
DMerge approach can produce better predictions by dynamically
identifying the best-performing model and merging the correspond-
ing model prediction sets. Another interesting phenomenon is
shown during the period of June to October of 2015 [Fig. 4(b)],
in which the AdaBoost tree algorithm significantly overestimated
the hydropower releases. However, the DMerge method was able to
capture the variation of hydropower releases and retains similar pre-
dictive performances to RF and the Extra-Trees algorithms, which

Fig. 4. (Color) Comparison of the observation (black dots) and
the prediction and using AdaBoost (red), RF (blue), Extra-Trees
(pink), SMA (yellow), and DMerge (green), under (a) Scenario 1;
(b) Scenario 2; and (c) Scenario 3 during the validation period
(January 1, 2014, to December 31, 2015).

© ASCE 04019072-8 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(2): 04019072 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
al

if
 S

ta
te

 U
ni

v-
L

os
 A

ng
el

es
 o

n 
01

/2
3/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



are performing more satisfactorily than the AdaBoost tree algo-
rithm during this particular prediction period. Similarly, in
Fig. 4(b), after October 2015, RF and Extra-Trees algorithms began
to overestimate the hydropower releases, and the AdaBoost tree
algorithm became a better prediction model. The proposed DMerge
method identified the performance changes of different candidate
models and retains the best-performing models during October to
December 2015. Under Scenario 3, all models were unable to pro-
vide a reasonably good prediction after April 2015 because only
hydrological and state and regulation variables were employed as
model inputs. The reduced model inputs resulted in the deteriora-
tion of model predictive performances. More in-depth discussions
about the usefulness of information and variables are provided in
the next section.

Decision Variable Contribution

In this section, we analyze the sensitivity to model inputs. The goal
is to provide a mathematical evaluation of the decision variables’
contribution to the derivation of the simulation results as shown
in Fig. 4. To evaluate the contributions of model inputs, we use
the reduction of the percentage of mean-square error (MSE) for
each decision variable in the tree-growing process. According to
Breiman (1996, 2001), Hancock et al. (2005), and Liaw andWiener
(2002), the percentage of MSE reduction is a standard indicator to
measure the functioning of each split in the tree-growing process.
For each split, the differences in MSE with and without the split are
first achieved. Then, the MSE reduction is summed up by each de-
cision variable for all the splits in the tree. Last, the summed MSE
reduction for each decision variable is normalized in a manner that
a higher percentage of MSE reduction indicates a more efficient
split using such model input. The sum of percentages of MSE re-
duction for all decision variables will always equal 1. A lower MSE
reduction percentage of a decision variable would indicate that
the decision variable is less important compared to others. Theo-
retically, a zero percentage of MSE reduction for a decision variable
suggests that this decision variable is not used in the tree-growing
process and has nearly no predictability of the target variable
(i.e., hydropower releases in our case study).

The calculated percentages of MSE reduction for all decision
variables are shown in Fig. 5. According to Fig. 5, the impact
of hydropower generation on the ecosystem is not neglectable
in reservoir decision making. In addition, in all cases (Scenarios
1–3), the storage and inflow are two of the most important decision
variables relevant to the patterns of hydropower releases. This is
because of the facts that most of reservoirs in the United States
are controlled by rule curves, which essentially describe the rela-
tionship between storage and allowable releases, and the reservoir
inflow is the main source to replenish the reservoir storage as
compared to other water supplies to the reservoir.

Input Variable Cross-Correlation

It is highly possible that the employed model inputs are collinear
and correlated. In order to examine the correlation among differ-
ent inputs, as well as the relationship between raw model inputs
and hydropower releases, we conducted the following experiment.
In Fig. 6, we map out the correlation coefficients of each model
input against one another [Fig. 6(a)] and also calculated the raw
correlation coefficients between model inputs against the target
variable [Fig. 6(b)]. The diagonal line in Fig. 6(a) indicates corre-
lation coefficients values of 1, i.e., the self-correlation of each
model input with respect to itself. The numbers on the x- and y-axes
correspond to the number of model inputs listed in Table 2. The

correlation coefficients in Fig. 6 are derived using all of the data
sets (2010–2015). The authors have examined the correlation
coefficient values within different splits of data in calibration
(2010–2013), validation (2014–2015), and the entire set (2010–
2015), in which the correlation coefficients are consistent with
minimal variations among different periods.

Discussion

Model Performances and Suitability

The evaluation metric obtained from different models (Table 2)
shows that all methods are able to reach satisfactory simulation
results for most of the cases except for Scenario 3. Table 2 also
shows that the AdaBoost algorithm tends to outperform the RF
and Extra-Trees algorithm when there are extended predictors used
for model training (e.g., Scenarios 1 and 2). The model perfor-
mances of AdaBoost, RF, and the Extra-Trees algorithm are similar
to one another under Scenario 3. Nevertheless, the newly developed
DMerge method is able to increase the model prediction accuracy
under each scenario consistently, and the improvement of statistics
is significant according to results in Table 2. With respect to the
NSE and KGE values during the validation period, the improve-
ment allowed by the DMerge method is about 15%–30%.

The DMerge method has shown advantages because of its
self-learning mechanism, which iteratively evaluates the best-
performing models and weights the current best-performing model
against the model that outperforms others for the maximum number
of historical time steps. The results in Figs. 4(a and b) along with
our analysis in the results section indicate that the DMerge method
is able to capture dynamic changes of model performance and ad-
just the ensemble prediction. Therefore, it provides better results
than the SMA method or any single model. With regards to the
SMA approach, the model weights remain constant over time,
which inevitably produces an ensemble that lies between the best
prediction and the worst prediction at each time step as shown
in Figs. 4(a and b). The proposed DMerge method is able to give
improved statistics over the SMA method in both calibration and
validation periods. For example, for the DMerge method, the NSE
and KGE values under Scenario 1 (validation period) are 0.931
and 0.934, respectively. The NSE and KGE values produced by
DMerge under Scenario 2 (validation period) are 0.878 and 0.895,
respectively. For the SMA method, the NSE and KGE values under
Scenario 1 (validation period) are 0.870 and 0.884, respectively.
The NSE and KGE values produced by the SMA method under
Scenario 2 (validation period) are 0.825 and 0.852, respectively.
As compared to the above-summarized NSE and KGE values from
both DMerge and SMA, the DMerge method will produce consis-
tently better predictions than the SMA method, which is employed
as the baseline reference.

In addition, the model performance with ensemble tree methods,
especially the extremely randomized trees method, suffers from
high dimensional data sets, since the bias increases as the randomi-
zation level increases. The proposed DMerge method is not a ran-
domization process; rather, it is a model-averaging tool to reduce
biases associated with an individual model. Considering a situation
when one single model, i.e., extremely randomized trees, processes
a greater amount of bias than others, the DMerge method identifies
that this model is not the current best model, and the model with
the lowest bias is used to develop the hybrid prediction for next
time step. The logic is explained in the methodology section. The
increases of model bias are likely to happen when the dimension-
ality of the data set becomes larger. Some standard computer
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Fig. 5. (Color) Normalized MSE reduction percentages for all decision variables under different scenarios.
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science benchmark data sets with high dimensionality could be fur-
ther tested, for example, the Machine Learning Repository from
UC Irvine, which is heavily used for artificial neural network
algorithm development (Yang et al. 2017b).

It is also worth mentioning that the proposed DMerge method
can be used for other types of predictive models, such as artificial
neural networks, support vector machines, or any linear regression
models. The only assumption for DMerge is that users will have
different options of data-driven models for time-dependent predic-
tion problems and different predictive models may exhibit different
performances over time. As new data gradually become available,
the DMerge method can provide a means of injecting updated in-
formation into the step-by-step prediction process.

Impacts of Different Decision Variables

According to Fig. 5, Nino 1 is identified as the most important cli-
mate predictor among climate information for the hydropower
releases for Shasta Lake. This finding is similar to the conclusion
from Gutiérrez and Dracup (2001), in which reservoir discharges
in the Columbia River basin (western US) were highly correlated
to the El Niño indicators. Garen (1993) claimed that many climate
indicators, including El Niño and PDO, were useful information for
predicting the water supply conditions in the Western US. Similar
conclusions were drawn from the study by Montoya et al. (2014)
and Pagano and Garen (2003), in which the large-scale climate
indicators were found to be associated with April 1 snow water
equivalent in the Sierra Nevada of California. In another study, Lü
et al. (2011) identified that Nino1, 2, and Nino3.4 were represen-
tative of the streamflow variation of the Yellow River basin of
China. In addition, many previous studies pointed out the connec-
tions between the El Niño phenomenon and streamflow in the
United States (Cayan et al. 1999; Cayan and Webb 1993; Dettinger
et al. 2011; Redmond and Koch 1991; Miao et al. 2010). However,
the means to mathematically quantify the impacts of a specific cli-
mate index on hydropower release management have rarely been
reported. In this study, we tackle this issue by using the reduction
of MSE to evaluate the relative impacts of climate indices on the
hydropower releases from Shasta Lake as shown in Fig. 5.

It is worth mentioning that, besides the El Niño indices, season-
ality and reservoir inflows also demonstrate strong correlations
with hydropower releases (Fig. 6). In California, the water supply

conditions strongly vary from season to season. Winter precipita-
tion is the primary driving force of the hydrological cycle. How-
ever, as a certain portion of winter precipitation is stored as
snowpack along the Sierra Nevada, the impacts of precipitation
on hydropower releases is limited (Fig. 5). Different from precipi-
tation, the reservoir inflow, especially during runoff season (April
1–August 31 each year), can play an important role in explaining
the variation of hydropower releases, accounting for about 15%–
30% for the best-performing DT model under Scenarios 2 and
3. The reason is that when reservoir inflows are expected to be high,
reservoirs are facing the risk of potential flooding. As a result,
water in the storage flood control pool or the conservation pool
needs to be released either from a spillway or hydropower turbines.
In addition, this study uses the daily inflow and storage volume as
predictors, while monthly inflow accumulation and storage could
be better predictors for monthly hydropower approximation. As the
current simulation is based on the daily scale, the variations exhib-
ited at daily time steps could provide better predictability.

As we compare the statistical metrics among different simula-
tion scenarios (Table 2), another interesting finding is that the stat-
istical performances of all models become worse as the number of
model inputs decreases from Scenario 1 to Scenario 3. After pur-
posely removing water quality indices from Scenario 1, the statis-
tics all decrease to some extent as shown in Table 2. Similarly,
the deteriorations of statistical measures are also observed under
Scenario 3 when the climate indices from the set of model inputs
under Scenario 2 are intentionally excluded. This indicates that
both water quality and climate conditions are useful information to
determine hydropower releases of the Shasta Dam. The high im-
pacts of water quality indicators on hydropower releases are due
to ecosystem constraints downstream of the hydropower turbines.
After the water goes through the hydropower turbines, the velocity
potential of water increases due to the decrease of gravity potentials
and increased heat of the released water (DOE 2014b). The heated
water has less capacity to hold dissolved oxygen, which can create
dead zones in water bodies (DOE 2014a; EPA 2013a, b). All the
effects have detrimental impacts on the ecosystem and living
conditions of spawning fish. According to Fig. 5, in general, the
dissolved oxygen has a higher sensitivity to hydropower releases,
followed by the water temperature and water turbidity indicators.
Therefore, including those water quality variables in a

Fig. 6. (Color) (a) Correlation coefficient among model inputs; and (b) correlation coefficient between each model input against hydropower release.
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multiobjective decision support model is essential, because signifi-
cant deterioration of all statistical measures are observed after re-
moving those variables from the modeling approach employed in
this paper. The scenario experiments carried out in this paper
(Table 2 and Fig. 4) suggest that water quality information should
be considered in the hydropower decision-making process. Other-
wise, the simulation accuracy will be compromised. Similarly, the
inclusion of climate information also increases the simulation ac-
curacy of hydropower release as compared to the statistics between
Scenario 2 and Scenario 1. Furthermore, as demonstrated in this
paper, the data-driven models (DT methods) are able to incorporate
a large number as well as various types of decision variables into a
hydropower modeling process. This unique feature of a data-driven
model provides the flexibility of adding additional ancillary infor-
mation to various modeling problems and allows decision makers
and operators to carry out sensitivity analyses on different types of
information that are tailored to reservoir operations.

Reservoir Operating Rules

In California, most of the reservoirs are strictly controlled and op-
erated by the operation manuals designed by the US Army Corps
of Engineers (USACE) (USACE 2016). These operation manuals
are also called rating/rule curves, which describe the empirically
preferred reservoir storage level and discharge relationships that
satisfy essential engineering constraints and flood control require-
ments (Louks and Sigvaldason 1981). In California, the reservoir
discharges, including hydropower releases, must obey these reser-
voir rule curves, and only in special cases can the discharge deviate
from the rule curves (Kelly 1986; Yang et al. 2015). The primary
purpose of these rule curves is to regulate reservoir discharges so
that the risk of flooding and the possibility of dam seepage can be
controlled within certain allowable ranges. As shown in Fig. 5, the
storage variable has consistently high importance with respect to
explaining the variation of hydropower releases, which is in line
with the concept of reservoir rule curves. According to the best-
performing DT model under each scenario (Fig. 5), the contribution
of storage level on hydropower releases ranges from more than
20%–50% as compared to other decision variables.

In California, the snow water equivalent (SWE) content, or
snow depth information, also has high importance for reservoir
operation and storage planning. In the current model input set, we
only included seasonality as one of the inputs. The use of SWE
content needs further investigation in terms of the delay effects of
snow melting in April and solid precipitation accumulation in
mountainous areas. The impact of SWE on hydropower is sug-
gested to be considered over a longer period time in a monthly or
yearly time step in which the delay effects of snow melting could be
better captured along the seasonal variation of hydropower releases.
Daily hydropower already contains a high level of randomness and
noise due to the complex decision-making process constrained by
multiple factors.

Selections of Model Inputs and Sensitivity Analysis

In this study, we use 26 decision variables (Table 1), which includes
hydrological information, climate indices, and reservoir operational
data, as well as some water quality indicators related to hydropower
generation. According to Fig. 6(a), it is obvious that some model
inputs are correlated as shown with bright yellow (positive corre-
lation) or dark blue (negative correlation) cells. The high correla-
tion values are most likely to appear for Model inputs 15–24
[Fig. 6(a)], which contain the El Niño indices, CENSO, PDO,
AO, and other indices (Table 1). Most of the correlated climate

indices are related to direct measures of SST, El Niño, and ENSO.
Therefore, high correlations among the raw model inputs are
unavoidable. Though some model inputs are correlated or collinear,
we also found in Fig. 6(b) that the correlation coefficients between
individual raw model inputs and hydropower releases are relatively
low, ranging from −0.4 to 0.4. According to Fig. 6(b), among the
Model inputs 15–24, the variables with the highest correlation co-
efficient values are 16 (Nino1) and 20 (CENSO) with correlation
coefficient values about −0.4 to −0.3. This indicates that a single
climate index may not lead to confident predictability of reservoir
releases and the uses of multiple climate indices along with other
ancillary information together could potentially result in better pre-
dictability of reservoir operation.

From Fig. 6(a), we also observe that many model inputs have
some level of correlations with other predictors in the same group.
Though the raw hydrological information and reservoir storage
(Model inputs 1–5) have relatively higher correlation coefficients
than other individual predictors; noise and the equifinality issue
may exist. Many raw model inputs contain seasonality and exhibit
high correlation against the last model input. Further study is sug-
gested to extract eigenvalues of multidimensional data instead of
using raw inputs. Principal component analysis could be used to
create noncorrelated model input sets (Chu et al. 2014; Naeini et al.
2018). Data preprocessing and dimensionality reduction techniques
could potentially promote models’ performance. However, the
physical interpretation of how raw model inputs influence the target
variable could be compromised.

In addition, this study selects the model inputs based on some
prior studies on climate indices influencing reservoir operation
(Kim et al. 2019; Yang et al. 2017a). The inclusion of water quality
information in hydropower release simulations is rarely investi-
gated in the literature, partially because many presented case stud-
ies do not have ecosystem management or fish species protection
concerns along with hydropower modeling. However, in Fig. 6(b),
it is obvious that the correlation coefficient of water turbidity, tem-
perature, and dissolved oxygen against hydropower releases are
not negligible (about 0.2–0.3), which are comparable to many other
raw model inputs. Hydropower production will affect the down-
stream water temperature, turbidity, and dissolved oxygen, all of
which are unfavorable or even detrimental to fish spawning and
aquatic wildlife survival (Conklin and Young 2008; Conklin et al.
2007; DOE 2014b). Power plants (including hydropower plants)
that withdraw water and then release it back into the environ-
ment at an elevated temperature must comply with temperature
limits under the National Pollutant Discharge Elimination System
(NPDES) program (Veil et al. 1993) authorized by Section 316(a)
of the US Federal Clean Water Act (CWA), although water temper-
ature is not included in the US Environmental Protection Agency
(EPA) list of priority pollutants (EPA 2013a, b). At higher temper-
atures of intake water, hydropower plants may reduce electricity
production to meet the discharge temperature limit or risk paying
fines (Kimmell and Veil 2009). In California, strict state regulations
and laws protecting fish species and ecosystems that regulate the
allowable levels of water quality for hydropower dams have been
established for years (CDWR 2013, 2015; Conklin and Young
2008; Conklin et al. 2007). Those factors mentioned above are all
important for modeling hydropower decision making. However,
water quality and ecosystem concerns belong to a different cat-
egory of information besides hydrology and climate forcing. There
are neither direct links among those variables nor well-understood
physical processes that relate those decision variables to hydro-
power releases. This study tries to connect the neglected water
quality with hydropower simulation in a statistical modeling
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framework in support of an integrated water resources management
for the Shasta Lake operation.

Limitations and Future Work

In the presented experiments, the model input data are not lagged,
which means the hydropower releases at any time step depend on
the corresponding predictors at the same current time step. It is
inevitable that some model inputs could have a certain level of au-
tocorrelation. However, as the temporal resolution of target values
(hydropower releases) is at a daily scale, the uses of lagged model
inputs could be arguable. For example, the water storage is a result
of the water balance of the total reservoir inflow, outflow (including
hydropower releases), and previous time-step water storage. The
lagged water storage (state variable) is partially dependent on the
hydropower releases in the previous time step. A well-trained re-
gression model would identify the linear relationship between the
target variable and its dependent decision variable, instead of a
set of independent decision variables. In our case, the DT models
capture the hydropower releases that have a certain level of auto-
correlation at a daily scale with respect to the lagged storage vol-
ume. Instead of lagging reservoir storage, we also recommend that
climate conditions be intentionally lagged for several steps as those
large-scale teleconnections and ENSO phase changes could happen
at the temporal scale of months to years. However, using the lagged
climate indices should be carried out with a longer data set than
the current study, because some climate indices, such as PDO, have
annual time scale duration when changing phases. The impacts of
those climate indices become more significant as long-term obser-
vation of reservoir operation data and water quality data become
available to use in the employed modeling framework in this paper.
Nevertheless, with the current experiment settings, results show
that hydropower releases from the Shasta Dam can still be well si-
mulated (Fig. 4) and satisfactory statistics are achievable (Table 2).
Furthermore, as demonstrated in Fig. 6, many climate indices have
similar contribution percentages and cross-correlation may exist
within those model inputs. Similar conclusions are also drawn from
a prior study (Yang et al. 2017a). However, the cross-correlation
among decision variables does not undermine the findings of this
study. All DT methods employed in this study successfully and
consistently identify that the Nino 1 index is the most useful indi-
cator from the climate variable category, and this finding is also in
line with many previous studies as mentioned above. However, this
phenomenon can also be explained by the fact that the reservoir
inflows correlate well with the variation of El Niño indices for a
short period of time at daily temporal scales.

Besides the lag effects of climate indices, water quality pre-
dictors are also not lagged in this study. The current simulations
are conducted on the daily scale, while the water quality indicators
are observed at an hourly scale. Based on some personal com-
munications with some water managers and dam operators, when
ecosystem and fish species activities coincide with hydropower
generation, water turbidity, temperature, and dissolved gas at the
outlet of a hydropower facility should be kept at certain desired
levels, especially during fish migration and spawning seasons. This
indicates that though a coarse resolution (daily) is used for water
quality variables in our case study, it is not detrimental to estimate
the hydropower at a daily scale. The lag effects are more influential
when upscaling from daily to monthly as evidenced by some prior
studies (Raman and Chandramouli 1996; Hejazi and Cai 2011).
If the resolution of simulation is monthly, it is suggested to con-
struct prior time step inputs together with predictors at the current
time step.

Another limitation is the setting of coefficients for current and
historical best ensemble members. In the presented experiments,
the values of coefficients for the current and historical best mem-
bers are 0.7 and 0.3, respectively. These coefficient values are based
on many default settings in the uses of the PSO algorithm in the
field of optimization. Furthermore, the authors have tested some
other combinations of coefficients and found that values of 0.7
and 0.3 for current and historical best members in Eq. (2), respec-
tively, are acceptable. In order to systematically determine the best
coefficients, another layer of optimization and sensitivity tests is
needed, which is rather beyond the proof-of-concept goal of this
study. Also, the performances of different candidate models can
also affect the optimal combination of coefficients in the proposed
DMerge algorithm. Future work could adopt a brutal search method
or a heuristic optimization scheme to determine the weights for dif-
ferent problems using other regression models.

Further study is also suggested to determine the optimal lag
times on each climate index for water resources planning and inves-
tigate the predictability of grouped model inputs or dimensionality-
reduced model inputs for hydropower. It will also be useful to relate
the physical explanations of certain release events to the variabil-
ity of certain climate indices. For example, the mechanism of fast
horizontal water vapor transfers from tropical regions to northern
California (e.g., the atmospheric river events) deserves further in-
vestigation and should be conducted in other research. In addition,
the soft data (expert knowledge) can also be quantified and incor-
porated into the proposed data-driven models to further enhance
models’ predictive performances for hydropower discharge simu-
lation. The data-driven approaches, as demonstrated in this paper,
have the flexibility of adding ancillary information or removing
nonuseful predictors, which should be emphasized in further
studies of reservoir operation and water resources management.

Conclusion

In this study, a newly developed DMerge technique is proposed
to postprocess multiple DT models’ outputs and provide a more
accurate ensemble prediction. The performance of the DMerge
method was compared with the AdaBoost tree, RF, and Extra-Trees
algorithms with respect to multiple statistics on a hydropower sim-
ulation problem. Experiments were carried out under different sce-
narios to simulate the hydropower discharges from the Shasta Dam
using multiple types of information. A total of 26 types of decision
variables were selected as model inputs, including hydrological
information, climate phenomenon indices, reservoir state and regu-
lation, and water quality indicators. The model inputs sensitivities
were evaluated with respect to their predictability for hydropower
releases. This paper provides a promising way to combine different
AI and DM model outputs and demonstrates that improvements in
the prediction accuracy of hydropower releases are achievable. Fur-
thermore, the approaches employed in this paper are able to provide
a flexible modeling capability for decision makers to utilize various
types of information for water resources planning. The following
findings and conclusions are summarized based on the presented
experiments:
1. A DMerge method appears to be a superior model ensemble

algorithm as compared to the SMA method, as well as indivi-
dual DT models, including the AdaBoost, RF, and Extra-Trees
algorithms in our study case. The DMerge method is inspired
by the concept used in particle swarm optimization that both
historical and most current information are weighted to approx-
imate further status. The advantage of the DMerge method lies
in its structure of self-learning and bias-removing mechanism
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in producing future time step prediction, in which the historical
best-performing model is weighted against the current best-
performing models in a dynamical ensemble process.

2. Our case study over Shasta Lake in northern California suggests
that the proposed DMerge method could produce better statis-
tical measures than other DT methods and the SMA method,
which indicates a stronger ability to simulate decision making
in hydropower releases. Furthermore, in our case study, climate
condition is identified as one of the most important factors for
hydropower releases. Nino 1 and seasonality are identified as
representative indicators within the climate category for explain-
ing the variation of hydropower releases from Shasta Lake.

3. In our hydropower simulation study, the AdaBoost tree method
is superior to the RF and the Extra-Trees algorithms, especially
when the number of predictors is sufficient (Scenario 1). Under
Scenario 3, which has a limited number of model inputs as
compared to other scenarios, the AdaBoost tree, RF, and the
Extra-Trees algorithms have similar results as compared to one
another. The proposed DMerge and SMA methods are able to
increase the prediction accuracy under all experiment scenarios,
and the DMerge approach is able to produce better results than
the commonly used SMA method.
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