

Theorem (Division algorithm)
Let
$$a, b \in \mathbb{Z}$$
 with $b > 0$.
Then there exist unique
integers q and r where
 $a = qb + r$
and $0 \leq r < b$

Proof:
First the existence part.
Define

$$T = \{a - xb \mid x \in \mathbb{Z} \text{ and } a - xb \ge 0\}$$

Ex: $a = 10, b = 3$
 $T = \{10 - 3x \mid x \in \mathbb{Z} \text{ and } 10 - 3x \ge 0\}$

$$a-3b = 10 - 3 \cdot 3 = 1 \quad (x=3)$$

$$a-2b = 10 - 2 \cdot 3 = 4 \quad (x=2)$$
So, IET and HET
T is infinite
Idea: We will find the r we
want inside of T.

$$\frac{\text{claim: } T \text{ is not empty}}{\text{pf of claim!}}$$

$$\frac{\text{case 1: Suppose a = 0.}}{\text{Then, if } x=0 \text{ we yet}}$$

$$a-bx = 0 - b \cdot 0 = 0 \in T$$

$$case 2: \text{ Suppose a > 0.}$$

Then set
$$x = -1$$
 and get
 $a - bx = a + b \in T$
 >0
Case 3: Suppose $a < 0$.
Set $x = 2a$ and get >0
 $a - bx = a - 2ab = a(1-2b) \in T$
 $a < 0$ $b > 1$
 $-2b \leq -2$
 $(-2b \leq -1)$
 $(-2b \leq 0)$

Summary of cases is: T is not empty

So, T is a non-empty set of non-negative numbers. Thus, T must contain a Smallest number, call that number r. So, ret for all tet. Since $r \in T$ we can write $r = \alpha - bq$ [I'm using 9] instead of x) Thus, $\alpha = bq + r$ IS OSYSB We already know r>0 since rET.

Let's rule out
$$b \le r$$
.
Suppose $b \le r$.
Then $0 \le r - b$.
Also,
 $r - b = (a - bq) - b$
 r
 $= a - b(q + 1) \in T$

Thus,
$$r-b \in T$$
.
But then $0 \leq r-b < r$
bod
But r is the smallest element
of T . We can't have

$$r-b \in T$$
 and $r-b < r$.
Contradiction,
Thus, $0 \leq r < b$
Thus, there exist 9, r with
 $a = bq + r$ and $0 \leq r < b$.
(uniqueness)
Suppose
 $a = bq + r$ and $a = bq' + r'$
where $0 \leq r < b$ and $0 \leq r' < b$.
Let's show this implies
that $q = q'$ and $r = r'$.

WLOG (without loss of generality) assume $r' \leq r$. Subtract a=qb+r from a=qb+r to get O = (q - q')b + (r - r')We yet (q'-q)b = (r-r') $S_{0}, b|(r-r').$ $0 \le r' \le r < b$ Also, Subtract r' to get

 $0 \leq r - r' < b - r' \leq b$ $S_{0}, b|(r-r')$ and $0 \leq r-r' \geq b$. This can only happen if r-r=0 $S_{2} = r'$ Plug r-r'=0 into 0 = (q - q')b + (r - r')yet +00 = (q - q')b670 Su, q-q=0. Thus, q = q'. [END!]

Theorem: Let a, b E ZL, not both Zero. Then there exist Xo, YOEZ with $gcd(a,b) = ax_{o} + by_{o}$ proof: Define $x, y \in \mathbb{Z}$ $S = \{ax + by\}$

 $= \left\{ \begin{array}{l} \alpha \cdot (+b \cdot 0) \\ x = 1, y = 0 \end{array} \right\} \xrightarrow{100a - 50b} \\ x = 1, y = 0 \end{array}$

Note that $\alpha = \alpha(1) + b(0) \in S$ $-\alpha = \alpha(-1) + b(0) \in S$ $b = \alpha(0) + b(1) \in S$ $-b = \alpha(0) + b(-1) \in S$

So, a,-a,b,-bes. Since a and b are not both zero this implies that 5 contains a positive integer. So, S must contain a smallest positive integer, call it d. Since des we have $d = a X_0 + b Y_0$ where Xo, Yo E U.

Let's show that d=gcd(a,b) and we are done. First let's show d is a common divisor of a & b. Let's show that dla. By the division algorithm we get g, r EZ where d = dd + Land o≤r<d. Note that $r = \alpha - dq$ $= \alpha - (\alpha x_0 + b y_0) q$

 $= \alpha (1 - \chi_{0} + f) + f(-\chi_{0} + f)$ is of form axtby where x, y EZL $\mathcal{Y}_{0}, \Gamma \in \mathcal{S}_{\cdot}$ But Dered and res and d is the smallest Positive element of S. Thus, r=0. So, a = dq + r = dqSo, da.Similarly you can show that dlb. Jo, d is a common divisor of a & b.

So, d' d. Su, dild and d'yo and dyo thus by a previous theorem we get $d' \leq d$. $S_{0}, d = gcd(a,b).$