Math 4740 10/21/24

Odds Let E be an event. Define "odds against $E'' = \frac{P(E)}{P(E)} = \frac{1-P(E)}{P(E)}$ what casinos This is odds calculations. use for 4-sided Ex: Suppose you coll a die. Let E be the event that 4 is rolled. $(\text{odds against E}) = \frac{P(E)}{P(E)} = \frac{3/4}{1/4}$ $= \frac{3}{1}$ written as 3:1

How to convert to probability odds against E C d $P(E) = \frac{d}{c+d}$

P9.(49 green 0 red 32,19,21,25, 34,27,36,30, 20 S 23,5,16,1, 3 EUROPEAN 14,9,18,7 60 24 12,3 26 black 5 15, 4, 2, 17 0 10 32 6, 13, 11,8 10,24,33,20 15 0 31,22,29,28 9 \$ 35,26 1 Totals: 1 green 2 EL 8 red (5 11 34 9 18 black = 37 total green 5 0,00 <u>red</u> 27,25,12,19 22 15 3 2 18,21,16,23 3 3 14, 9, 30,7 3 3 32,5,34,3 200

		-		
	_	0	$) \top ($	00
1		1	2	3
18	1st 12	4	5	6
EV		7	8	9
EN		10	11	12
	2nd 12	13	14	15
		16	17	18
III		19	20	210
CK		22	23	24
2	F 3rd 12	25	26	27
B		28	29	
19 t		31	32	33
K.		34	35	36
		2 to 1	2G1	2 to 1

Casino payouts Type of Bets And Winding Chances

		Inside bets
Bet Name	Ex	Numbers to bet on
Straight up	A	30
So lit Bet	B	11 or 14
Street Bet	С	19, 20, 21
Corner	D	25, 26, 28, 29
Five Numbers	E	0, 00, 1, 2, 3
Line Bet	F	4, 5, 6, 7, 8, 9

Outside Bets

Bet Name	Ex	Numbers to bet on
Column	G	Set of column numbers
Dozen	H	25 through 36
Red or Black	I	Red numbers
Evenor Odd	J	Odd numbers
Low or High	K	19 through 36

American version / Handout

Payout 35:1 17:1 11:1 8:1 6:1 5:1

True odds 37:1 36:2 35:3 34:4 32:6

True odds 26:12 26:12 20:18 20:18 20:18

Sample space for American Wheel

$$S = \begin{cases} 0, 00, 1, 2, 3, 4, 5, 6, 7, \\ 8, 9, 10, 11, 12, 13, 14, \\ 15, 16, 17, 18, 19, 20, \\ 21, 22, 23, 24, 25, 26, \\ 27, 28, 29, 30, 31, 32, \\ 33, 34, 35, 36 \end{cases}$$

Each number is equally likely with probability 1/38

Straight up bet (35:1 payout) Suppose we bet \$1 on (10) What's the expected value of this bet? Let X be the amount Won or lost. if w=10 $X(w) = \begin{cases} -1 \\ 4 \\ 35 \end{cases}$ if w = 0 $E[X] = (-\$1)(\frac{37}{38}) + (\$35)(\frac{1}{38})$ Then, P(X=-1) P(X=35)

$$= - \$ \frac{2}{38} \approx - \$ 0.0526$$

$$\approx -5.264$$

o on average this bet loses
\$0.0526, per \$1 bet

 ζ

5.2

In the above example, 35°. the casino pays on a straight up bet. What use the real odds odds against) (that is, the fur this bet? f # we } Here $E = \sum_{i=1}^{n} 1 \cdot \frac{1}{2}$

$$(\text{odds against } E) = \frac{P(E)}{P(E)}$$

$$= \frac{37/38}{1/38} = \frac{37}{1}$$

That is, 37%). What if the casino actually paid 37:1 on this bet? Let Y be the amount Won or lost with this payout. $\overline{Y}(\omega) = \begin{cases} -1 & \text{if } \omega \neq 10 \\ 37 & \text{if } \omega = 10 \end{cases}$

Then,

$$E[\overline{Y}] = (-\$1)(\frac{37}{38}) + (\$37)(\frac{1}{38})$$

$$P(\overline{Y}=-1) \qquad P(\overline{Y}=37)$$

$$= \$0$$
With this payout you break
even in the long you, 0n
average you win/lose \$0 with
many bets.

Corner bet (8:1 payout) Suppose we put \$1 on the Corner bet E = { 13, 14, 16, 17 } 13 14 Let X be the amount won or 161 (17) lost. Then, our \$1 chip if w∉E $\overline{X}(\omega) = \begin{cases} -1 \\ 8 \end{cases}$ if we E WEE means w The expected is in E. value of this WEE means W is not in E bet is:

$$E[X] = (-\$1)(\frac{34}{38}) + (\$8)(\frac{4}{38})$$

$$P(X=-1) \qquad P(X=8)$$

$$= -\$\frac{2}{38} \approx -\$0.0526$$

$$\approx -5.26 \notin$$
On average with many bets
$$= -\$1 \text{ bet.}$$