
Algebra Comprehensive Exam Fall 2021, new style
Brookfield, Liu, Shaheen∗

Answer five (5) questions only. You must answer at least one from each of section: (I)

Linear algebra, (II) Group theory, and (III) Synthesis: linear algebra and group theory.

Indicate CLEARLY which problems you want us to grade; otherwise, we will select the first

problem from each section, and then the first two additional problems answered after that.

Be sure to show enough work that your answers are adequately supported. Tip: When a

question has multiple parts, the later parts often (but not always) make use of the earlier

parts.

Notation: Unless otherwise stated, N, Q,Z,Zn,C, and R denote the sets of natural num-

bers, rational numbers, integers, integers modulo n, complex numbers, and real numbers

respectively, regarded as groups or fields or vector spaces in the usual way.

Linear algebra

(L1) Let V and W be vector spaces over a field F . Let 0V and 0W be the zero vectors of

V and W respectively. Let T : V → W be a linear transformation. Let N(T ) denote the

nullspace of T .

(a) Show that T (0V ) = 0W .

(b) Show that T is one-to-one if and only if N(T ) = {0V }.

Solution: (a) We have that T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ). Now add −T (0V ) to

both sides to get that 0W = T (0V ). (b) Suppose T is one-to-one. We know from part a

that 0V is in the nullspace of T . Suppose x is in the nullspace. Then T (x) = 0W = T (0V ).

Since T is one-to-one we have that x = 0V . Thus, N(T ) = {0V }. Conversely, suppose that

N(T ) = {0V }. And suppose T (x) = T (y). Then T (x) − T (y) = 0W . So T (x − y) = 0W .

Thus x− y ∈ N(T ). So x− y = 0V . Thus x = y. So T is one-to-one.

(L2) Let V1 and V2 be proper subspaces of a vector space V . Show that V1 ∪V2 is a proper

subset of V .

(Recall that A is a proper subset of B if A is a subset of B but not equal to B.)

Solution: Suppose, to the contrary, that V1 ∪ V2 = V . Since V1 and V2 are proper subsets of

V , we can’t have V1 ⊆ V2 or V2 ⊆ V1, so there are vectors x1 ∈ V1\V2 and x2 ∈ V2\V1. Since

x1 + x2 ∈ V = V1 ∪ V2, we have two cases: If x1 + x2 ∈ V1, then x2 ∈ V1, a contradiction.

If x1 + x2 ∈ V2, then x1 ∈ V2, a contradiction.

(L3) Let V be the space of real functions spanned by B = {sin2 x, cos2 x, sinx cosx}. Let

φ : V → R3 be the linear map defined by φ(f) = (f(0), f ′(0), f ′′(0)) for all functions f ∈ V .

Show that φ is an isomorphism.
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Solution: Because differentiation and evaluations are linear maps from real functions to real

functions, φ is linear. By a calculation we have

(*) φ(c1 sin2 x+ c2 cos2 x+ c3 sinx cosx) = (c2, c3, 2(c1 − c2))

for all c1, c2, c3 ∈ R. Define ψ : R3 → V by

ψ(x1, x2, x3) =
1

2
(2x1 + x3) sin2 x+ x1 cos2 x+ x2 sinx cosx

for all x1, x2, x3 ∈ R. It is now easy to check that φ ◦ ψ = idR3 and ψ ◦ φ = idV , so these

functions are inverse bijections. In particular, φ is an isomorphism.

- OR-

Because differentiation and evaluations are linear maps from real functions to real functions,

φ is linear. φ is surjective because, for any (x1, x2, x3) ∈ R3, we have

(x1, x2, x3) = φ(1/2(2x1 + x3) sin2 x+ x1 cos2 x+ x2 sinx cosx).

Hence dim(imφ) = dim(R3) = 3. Also, because V has a three element spanning set, B,

we have dim(V ) ≤ 3. Because dimV = dim(imφ) + dim(kerφ), this can happen only if

dimV = 3 and dim(kerφ) = 0, in particular, kerφ = {0} and φ is injective. Since φ is both

surjective and injective, φ is an isomorphism.

- OR-

Because differentiation and evaluations are linear maps from real functions to real functions,

φ is linear. We show that B is linearly independent: Suppose that

c1 sin2 x+ c2 cos2 x+ c3 sinx cosx = 0

for some c1, c2, c3 ∈ R. Evaluating this at x = 0, x = π/4 and x = π/2 gives the equations

c2 = 0, c1 + c2 + c3 = 0 and c1 = 0, respectively. These equations imply c1 = c2 = c3 = 0.

This means that B is linearly independent. Since B also spans V , it is a basis for V .

From (*), we see that φ is represented by the matrix0 1 0

0 0 1

2 −2 0


with respect to the basis B of V and the standard basis of R3. This matrix has determinant

2 so is invertible. That means that φ is also invertible, and hence an isomorphism.

Groups

(G1) Let G be an abelian group. Show that H = {x ∈ G | |x| is finite} is a subgroup of G.

(Note: Here |x| denotes the order of x.)

Solution: Reminder: |x| is finite if and only if xn = e for some n.

(1) H closed under the group operation: Let x, y ∈ H. Then xm = yn = e for

some m,n ∈ Z, so using associativity and commutativity, (xy)mn = (xm)n(yn)m =

enem = e, hence xy ∈ H.
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(2) e ∈ H: Obvious, since |e| = 1.

(3) H closed under taking inverses: Let x ∈ H. Then xn = e for some n and so

x−1 = xn−1. Hence (x−1)n = (xn−1)n = xn(n−1) = (xn)n−1 = en−1 = e and

x−1 ∈ H.

OR

Since 〈x〉 = 〈x−1〉, we have |x−1| = |x|, from which the claim is clear.

(G2) The center of a group G is defined as

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

(a) Prove Z(G) is a normal subgroup of G.

(b) Prove: If G/Z(G) is cyclic, then G is abelian.

Solution: For problem (a) see here: https:// en.wikipedia.org/ wiki/ Center ( group theory)

and also problem 2 from here: http:// pi.math.cornell.edu/∼riley/ Teaching/ Groups and

Geometry2012/ past exams/ 2011prelim2 with solutions.pdf . For (b) see problem 11 from

here on page 2: https:// www.math.utah.edu/∼schwede/ math435/ HW4Sols.pdf

(G3) Let G be a group and k ∈ N. Prove: If H is the only subgroup of G with order k,

then H is a normal subgroup of G.

Solution: Suppose that H is the only subgroup of G with order k. Let g ∈ G. Define φg :

G → G by φg(x) = g−1xg. First show that φg is an isomorphism. Then φg(H) = g−1Hg

will be a subgroup of G of the same size as H. Thus, g−1Hg = H. Since this is true for all

g ∈ G we have that H is a normal subgroup of G.

Synthesis: Linear algebra and group theory

(S1) Let V be a vector space over a field F . Let

G = {T : V → V | T is a linear transformation }

(a) Show that G is a group under function addition. That is, the group operation is

defined to be (T1 + T2)(x) = T1(x) + T2(x) when T1, T2 ∈ G.

(b) Let

H = {T ∈ G | there exists some α where T (x) = αx for all x in V }

Show that H is a subgroup of G.

Solution: (a) The identity element is the zero function T0(x) = 0 for all x ∈ V . Let

T1, T2, T3 ∈ G. Given x ∈ V we have that ((T1 + T2) + T3)(x) = (T1(x) + T2(x)) + T3(x) =

T1(x) + (T2(x) + T3(x)) = (T1 + (T2 + T3))(x) which gives associativity. We have that

T1 + T2 ∈ G since (T1 + T2)(αx1 + βx2) = T1(αx1 + βx2) + T2(αx1 + βx2) = αT1(x1) +

βT1(x2) + αT2(x1) + βT2(x2) = α(T1 + T2)(x1) + β(T1 + T2)(x2). So G is closed under

function addition. We have that −T1 is also a linear transformation since −T1(αx1+βx2) =

https://en.wikipedia.org/wiki/Center_(group_theory)
http://pi.math.cornell.edu/~riley/Teaching/Groups_and_Geometry2012/past_exams/2011prelim2_with_solutions.pdf
http://pi.math.cornell.edu/~riley/Teaching/Groups_and_Geometry2012/past_exams/2011prelim2_with_solutions.pdf
https://www.math.utah.edu/~schwede/math435/HW4Sols.pdf
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−αT1(x1) − βT1(x2) = α(−T1(x1)) + β(−T1(x2)). So −T1 ∈ G and G is closed under

inversion. Thus G is a group.

(b) First note that if T : V → V is defined by T (x) = αx then T is a linear transformation

because T (c1v1 + c2v2) = α(c1v1 + c2v2) = c1αv1 + c2αv2 = c1T (v1) + c2T (v2).

The zero function T0 is in H since T0(x) = 0 · x for all x ∈ V . Let T1, T2 ∈ H. Then

T1(x) = αx and T2(x) = βx for all x ∈ V . Thus, (T1 +T2)(x) = T1(x)+T2(x) = αx+βx =

(α+ β)x. So T1 + T2 ∈ H. Also, −T1(x) = (−α)x for all x ∈ V . Thus −T1 ∈ H. So H is

a subgroup of G.

(S2)

(a) Let GL2(R) and GL2(C) be the groups of 2 × 2 invertible matrices with entries in R
and C respectively. Clearly, GL2(R) is a subgroup of GL2(C). Is GL2(R) is a normal

subgroup of GL2(C)? Proof or counterexample please.

(b) Let GLn(R) be the group of n× n invertible matrices with entries in R. Let SLn(R) be

the group of n × n matrices with determinant 1 and entries in R. Prove or disprove:

SLn(R) is a normal subgroup of GLn(R).

Solution:

(a) GL2(R) is not a normal subgroup of GL2(C). Counterexample: If A =

[
0 1

1 0

]
∈

GL2(R) and B =

[
i 0

0 1

]
∈ GL2(C), then B−1AB =

[
0 −i
i 0

]
6∈ GL2(R).

(b) Let A ∈ SLn(R) and B ∈ GLn(R). Then det(BAB−1) = (detB)(detA)(detB−1) =

detA = 1. Hence, BAB−1 ∈ SLn(R). Therefore, SLn(R) is a normal subgroup of

GLn(R).

(S3) Let SO2(R) be the group of 2 × 2 orthonormal matrices (that is, A−1 = AT ) with

determinant 1 and real entries. Let U(1) = {z ∈ C : |z| = 1}. Prove: SO2(R) ∼= U(1).

Solution: Observe, if A ∈ SO2(R) then A =

[
a −b
b a

]
and a2 + b2 = 1.

Define φ : SO2(R)→ U(1) by [
a −b
b a

]
7→ a+ bi.

One can show that φ is an isomorphism.


