
Algebra Comprehensive Exam Spring 2021, new style
Solutions

Brookfield, Krebs∗, Shaheen

Answer five (5) questions only. You must answer at least one from each of section: (I)

Linear algebra, (II) Group theory, and (III) Synthesis: linear algebra and group theory.

Indicate CLEARLY which problems you want us to grade; otherwise, we will select the first

problem from each section, and then the first two additional problems answered after that.

Be sure to show enough work that your answers are adequately supported. Tip: When a

question has multiple parts, the later parts often (but not always) make use of the earlier

parts.

Notation: Unless otherwise stated, Q,Z,Zn,C, and R denote the sets of rational numbers,

integers, integers modulo n, complex numbers, and real numbers respectively, regarded as

groups or fields or vector spaces in the usual way.

Linear algebra

(1) Let V be a vector space over a field F . Let S = {x, y, w} be a set of linearly independent

vectors of V . Let z ∈ V . Prove that S ∪ {z} is linearly dependent if and only if z is in the

span of the vectors from S.

Solution:

https://textbooks.math.gatech.edu/ila/linear-independence.html

See “Criteria for linear independence.”

(2) Let A be a square matrix, and let AT denote the transpose of A. Prove that λ is an

eigenvalue for A if and only if λ is an eigenvalue for AT .

https://math.stackexchange.com/questions/1384950/prove-that-lambda-is-an-eigenvalue-of-a-if-and-only-if-lambda-is-an-eige/

1384961

(3) Let U be a subspace of a finite dimensional vector space V over a field F . Show that

there is a linear transformation φ : V → V such that U = kerφ.

Solution: Let {v1, . . . , vk} be a basis for U . Extend this to a basis {v1, . . . , vk, vk+1, . . . , vn}
of V . Define φ : V → V by

φ(a1v1 + · · · akvk + ak+1vk+1 + · · ·+ anvn) = ak+1vk+1 + · · ·+ anvn.

Then φ is linear, and

kerφ = {a1v1 + · · · akvk + ak+1vk+1 + · · ·+ anvn | ak+1 = · · · = an = 0} = U.

Groups

(1) Let G be a group. Let H and K be normal subgroups of G. Prove that (i) H ∩K is a

subgroup of G, and (ii) H ∩K is normal in G.

Solution:

https://martin-thoma.com/intersection-two-normal-subgroups-normal-subgroup/

https://textbooks.math.gatech.edu/ila/linear-independence.html
https://math.stackexchange.com/questions/1384950/prove-that-lambda-is-an-eigenvalue-of-a-if-and-only-if-lambda-is-an-eige/1384961
https://math.stackexchange.com/questions/1384950/prove-that-lambda-is-an-eigenvalue-of-a-if-and-only-if-lambda-is-an-eige/1384961
https://martin-thoma.com/intersection-two-normal-subgroups-normal-subgroup/
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(2) Let G be a group. Let a, b ∈ G. Let

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}

be the dihedral group with 2n elements, where 1 denotes the identity element, and s2 =

rn = 1, and rs = srn−1. Prove that there exists a homomorphism φ : D2n → G such that

φ(r) = a and φ(s) = b if and only if |a| divides n and |b| ≤ 2 and ab = ba−1. Here |x|
denotes the order of the element x.

Solution:

First, suppose such a homomorphism exists. We will show that |a| divides n and |b| ≤ 2

and ab = ba−1.

Because φ(r) = a, we have that e = φ(1) = φ(rn) = φ(r)n = an, from which it follows that

|a| divides n. Here e denotes the identity element of G, and we make use of the fact that a

homomorphism maps the identity element to the identity element.

Simlarly, because φ(s) = b, we have that 1 = φ(s2) = φ(s)2 = b2, from which it follows that

|b| divides 2, so |b| = 1 or |b| = 2.

Finally, ab = φ(r)φ(s) = φ(rs) = φ(sr−1) = φ(s)φ(r)−1 = ba−1.

Now we prove the converse. That is, suppose that |a| divides n and |b| ≤ 2 and ab = ba−1.

We will show that there exists a homomorphism φ : D2n → G such that φ(r) = a and

φ(s) = b.

Define φ : D2n → G by φ(sirj) = biaj for all i, j ∈ Z.

Because the same input can be represented in more than one way, we must show that φ is

well-defined.

Suppose sirj = skrm for some integers i, j, k,m. We will show that biaj = bkam.

From sirj = skrm we get that i ≡ k (mod 2) and j ≡ m (mod n).

Because |b| ≤ 2, we know that |b| = 1 or |b| = 2, so in either case, b2 = e. Hence bi−k = e.

Because |a| divides n, we have that an = e, so aj−m = e.

Multiplying these two equations, we get bi−kaj−m = e. Multiply by bk on the left and am

on the right to get biaj = bkam.

Therefore φ is well-defined.

Next, we will show that φ is a homomorphism.

Let sirj , skrm ∈ D2n. Then

φ(sirj · skrm) = φ(si+k · rm−j) = bi+k · am−j = biaj · bkam = φ(sirj)φ(skrm).

Here we get rj · sk = skr−j by repeatedly applying the relation rs = srn−1. Same goes for

a and b in lieu of r and s.

Finally, φ(r) = φ(s0r1) = b0a1 = a and φ(s) = φ(s1r0) = b1a0 = b.

(3) LetA4 be the alternating group on 4 letters. LetK = {ι, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Here ι denotes the identity element of A4.

(i) Prove that K is a subset of A4.

(ii) Prove that K is a subgroup of A4.
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(iii) You may assume without proof that K is a normal subgroup of A4. (It is.) Find a

familiar group isomorphic to the quotient group A4/K, and prove that your answer

is correct.

Solutions

(i) All four elements of K are even permutations.

(ii) We are given that ι ∈ K.

Let a = (1 2)(3 4), b = (1 3)(2 4), c = (1 4)(2 3).

Then a2 = b2 = c2 = ι. Also, ab = ba = c, ac = ca = b, bc = cb = a. So K is closed under

the group operation.

Finally, every element in K is its own inverse, so K is closed under inverses.

(iii) We know that |A4| = 4!/2 = 24/2 = 12. So |A4/K| = |A4|/|K| = 12/4 = 3. Because

3 is prime, by a corollary to Lagrange’s theorem, we have that A4/K is cyclic of order 3,

hence isomorphic to the group of integers mod 3 under addition.

Synthesis: Linear algebra and group theory

(1) Let G be the group of all 2× 2 invertible matrices with entries from the real numbers.

Here the group operation is multiplication of matrices. Let

H = {A ∈ G | det(A) = 1}.

Prove that H is a subgroup of G.

We have that H ⊂ G by def. of H.

We have I ∈ H because det(I) = 1. Here I denote the 2× 2 identity matrix.

Suppose A,B ∈ H. Then det(AB) = det(A) det(B) = 12 = 1, so AB ∈ H.

Suppose A ∈ H. Then det(A−1) = det(A)−1 = 1, so A−1 ∈ H.

(2) Let V be a vector space of dimension 2 over R. Let GL(V ) be the set of all bijective

linear transformations from V to V . Then GL(V ) is a group; you do not need to prove that.

We say that a function f : V → V is a dilation if there is a nonzero real number a such that

f(v) = av for all v ∈ V . Prove that the center of GL(V ) equals the set of dilations.

Hint: Let φ be an element of Z, where Z is the center of GL(V ). Write φ(e1) = ae1 + be2

and φ(e2) = ce1 + de2, where {e1, e2} is a basis for V . Now consider the following two

elements of GL(V ), namely, f : e1 7→ e1 + e2, e2 7→ e2 and g : e1 7→ −e1, e2 7→ e2.

Solution:

Let D be the set of dilations. We will show that D = Z.

First we will show that D ⊂ Z.

Let f be a dilation. Let g ∈ GL(V ). We will show that f ◦ g = g ◦ f .

By def. of dilation, there exists α ∈ R such that f(v) = αv for all v ∈ V .

Then (f ◦ g)(v) = αg(v) = g(αv) = (g ◦ f)(v) for all v ∈ V , so f ◦ g = g ◦ f .

Hence D ⊂ Z. Now we will show that Z ⊂ D. We pick up where the hint left off.

By def. of center, we know that f ◦ φ = φ ◦ f .

So f ◦ φ(e1) = φ ◦ f(e1).

So f(ae1 + be2) = φ(e1 + e2) = φ(e1) + φ(e2).
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So ae1 + (a+ b)e2 = (a+ c)e1 + (b+ d)e2.

From this we get that a = a+ c and a+ b = b+ d, so c = 0 and a = d.

Now we use that g ◦ φ = φ ◦ g.

So g ◦ φ(e1) = φ ◦ g(e1).

So g(ae1 + be2) = φ(−e1) = −φ(e1).

So −ae1 + be2 = −ae1 − be2, which implies that b = −b, whence b = 0.

To recap, we have a = d and b = c = 0.

So φ(e1) = ae1 and φ(e2) = ae2. It follows that φ(v) = av for all v ∈ V , so φ ∈ D.

(3) Let

V = {a11x21 + a22x
2
2 + a33x

2
3 + a12x1x2 + a23x2x3 + a13x1x3 | a11, a12, . . . , a33 ∈ R}

be the 6-dimensional vector space of all quadratic homogeneous polynomials in variables x1,

x2 and x3 with coefficients in R. (The operations of addition and scalar multiplication in

this vector space are the usual addition and scalar multiplication for polynomials.) Let S3

act on V by permuting the variables. For example, with (1 2 3) ∈ S3 and 3x21 − 5x2x3 ∈ V
we get (1 2 3) · (3x21−5x2x3) = 3x22−5x3x1. Find a basis for the subspace of all polynomials

that are fixed by all elements of S3.

Solution: Suppose f = a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a23x2x3 + a13x1x3. Then f

is fixed by (1 2) if and only if a11 = a22 and a13 = a23. It is fixed by (1 3) if and only if

a11 = a33 and a12 = a23, and it is fixed by (2 3) if and only if a22 = a33 and a12 = a13. Then

f is fixed by all three transpositions if and only if it has the form

f = a11(x
2
1 + x22 + x23) + a12(x1x2 + x2x3 + x3x1)

But, if f has this form, then it is also fixed by (1 2 3) and (3 2 1). So {x21 + x22 + x23, x1x2 +

x2x3 + x3x1} is a basis for the subspace of all polynomials that are fixed by all elements of

S3.


