
Algebra Comprehensive Exam Spring 2021, old style
Solutions

Brookfield, Krebs∗, Shaheen

Answer five (5) questions only. You must answer at least one from each of groups, rings, and

fields. Indicate CLEARLY which problems you want us to grade; otherwise, we will select

the first problem from each section, and then the first two additional problems answered

after that. Be sure to show enough work that your answers are adequately supported. Tip:

When a question has multiple parts, the later parts often (but not always) make use of the

earlier parts.

Notation: Unless otherwise stated, Q,Z,Zn,C, and R denote the sets of rational numbers,

integers, integers modulo n, complex numbers, and real numbers respectively, regarded as

groups or rings in the usual way.

Groups

(1) Let G be a group. Let H and K be normal subgroups of G. Prove that (i) H ∩K is a

subgroup of G, and (ii) H ∩K is normal in G.

Solution:

https://martin-thoma.com/intersection-two-normal-subgroups-normal-subgroup/

(2) Let G be a group. Let a, b ∈ G. Let

D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}

be the dihedral group with 2n elements, where 1 denotes the identity element, and s2 =

rn = 1, and rs = srn−1. Prove that there exists a homomorphism φ : D2n → G such that

φ(r) = a and φ(s) = b if and only if |a| divides n and |b| ≤ 2 and ab = ba−1. Here |x|
denotes the order of the element x.

Solution:

First, suppose such a homomorphism exists. We will show that |a| divides n and |b| ≤ 2

and ab = ba−1.

Because φ(r) = a, we have that e = φ(1) = φ(rn) = φ(r)n = an, from which it follows that

|a| divides n. Here e denotes the identity element of G, and we make use of the fact that a

homomorphism maps the identity element to the identity element.

Simlarly, because φ(s) = b, we have that 1 = φ(s2) = φ(s)2 = b2, from which it follows that

|b| divides 2, so |b| = 1 or |b| = 2.

Finally, ab = φ(r)φ(s) = φ(rs) = φ(sr−1) = φ(s)φ(r)−1 = ba−1.

Now we prove the converse. That is, suppose that |a| divides n and |b| ≤ 2 and ab = ba−1.

We will show that there exists a homomorphism φ : D2n → G such that φ(r) = a and

φ(s) = b.

Define φ : D2n → G by φ(sirj) = biaj for all i, j ∈ Z.

Because the same input can be represented in more than one way, we must show that φ is

well-defined.

https://martin-thoma.com/intersection-two-normal-subgroups-normal-subgroup/
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Suppose sirj = skrm for some integers i, j, k,m. We will show that biaj = bkam.

From sirj = skrm we get that i ≡ k (mod 2) and j ≡ m (mod n).

Because |b| ≤ 2, we know that |b| = 1 or |b| = 2, so in either case, b2 = e. Hence bi−k = e.

Because |a| divides n, we have that an = e, so aj−m = e.

Multiplying these two equations, we get bi−kaj−m = e. Multiply by bk on the left and am

on the right to get biaj = bkam.

Therefore φ is well-defined.

Next, we will show that φ is a homomorphism.

Let sirj , skrm ∈ D2n. Then

φ(sirj · skrm) = φ(si+k · rm−j) = bi+k · am−j = biaj · bkam = φ(sirj)φ(skrm).

Here we get rj · sk = skr−j by repeatedly applying the relation rs = srn−1. Same goes for

a and b in lieu of r and s.

Finally, φ(r) = φ(s0r1) = b0a1 = a and φ(s) = φ(s1r0) = b1a0 = b.

(3) LetA4 be the alternating group on 4 letters. LetK = {ι, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Here ι denotes the identity element of A4.

(i) Prove that K is a subset of A4.

(ii) Prove that K is a subgroup of A4.

(iii) You may assume without proof that K is a normal subgroup of A4. (It is.) Find a

familiar group isomorphic to the quotient group A4/K, and prove that your answer

is correct.

Solutions

(i) All four elements of K are even permutations.

(ii) We are given that ι ∈ K.

Let a = (1 2)(3 4), b = (1 3)(2 4), c = (1 4)(2 3).

Then a2 = b2 = c2 = ι. Also, ab = ba = c, ac = ca = b, bc = cb = a. So K is closed under

the group operation.

Finally, every element in K is its own inverse, so K is closed under inverses.

(iii) We know that |A4| = 4!/2 = 24/2 = 12. So |A4/K| = |A4|/|K| = 12/4 = 3. Because

3 is prime, by a corollary to Lagrange’s theorem, we have that A4/K is cyclic of order 3,

hence isomorphic to the group of integers mod 3 under addition.

Rings

(1) Let R be a commutative ring with identity 1 6= 0. Let I be an ideal of R. Prove that I

is a prime ideal if and only if R/I is an integral domain.

Solution:

https://math.stackexchange.com/questions/1052380/prove-that-i-subseteq-r-is-prime-if-and-only-if-r-i-is-an-integral-domain/

1052392

(2) Let R be a commutative ring with identity 1 6= 0. Prove that R is a field if and only if

the only ideals of R are the ideals {0} and R.

https://math.stackexchange.com/questions/101157/a-commutative-ring-is-a-field-iff-the-only-ideals-are-0-and-1

https://math.stackexchange.com/questions/1052380/prove-that-i-subseteq-r-is-prime-if-and-only-if-r-i-is-an-integral-domain/1052392
https://math.stackexchange.com/questions/1052380/prove-that-i-subseteq-r-is-prime-if-and-only-if-r-i-is-an-integral-domain/1052392
https://math.stackexchange.com/questions/101157/a-commutative-ring-is-a-field-iff-the-only-ideals-are-0-and-1
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(3) Let R[x] be the ring of polynomials over the real numbers. Find a maximal ideal I of

R[x] so that R[x]/I ∼= R, and prove that your answer is correct.

Solution:

Let I = 〈x〉. Define φ : R[x]→ R by φ(f) = f(0). Then φ is a surjective ring homomorphism

with kernel I. By the first isomorphism theorem, we have that R[x]/I ∼= R. Hence R[x]/I

is a field, which implies that I is a maximal ideal.

Fields

(1) Let f(x) = (x2 − 2)(x2 − 3)(x2 − 5) ∈ Q[x]. Let E be the splitting field of f over Q.

(i) Determine the Galois group G of E over Q.

(ii) Explicitly write down the elements of a subgroup of G whose fixed field is Q(
√

15).

The Galois group G contains elements

α :
√

2 7→ −
√

2,
√

3 7→
√

3,
√

5 7→
√

5 and

β :
√

2 7→
√

2,
√

3 7→ −
√

3,
√

5 7→
√

5 and

γ :
√

2 7→
√

2,
√

3 7→
√

3,
√

5 7→ −
√

5 and

Then α, β, γ generate G, which is isomorphic to Z2 × Z2 × Z2.

(ii) Let H = {id, α, βγ, αβγ}. Then the fixed field of H is Q(
√

15).

(2) Let F be a finite field containing exactly 81 elements. Prove that every element of F

has a ninth root. In other words, prove that for every y ∈ F , there exists x ∈ F such that

x9 = y. Hint: Use what you know about F×, the group of units of F .

Solution: Here’s a solution that works more generally when |F | = 3n for some positive

integer n.

Let y ∈ F . If y = 0, then by taking x = 0, we are done. So we assume that y 6= 0.

Let F× be the group of units of F , so y ∈ F×. Then F× is a cyclic group of order 3n − 1.

Let g be a generator for F×, so g has order 3n− 1. We have that y = gb for some integer b.

Note that 3 does not divide 3n− 1, so 3 and 3n− 1 are relatively prime, which implies that

9 and 3n − 1 are relatively prime. Let a be a multiplicative inverse of 9 modulo 3n − 1.

Thus 9a ≡ 1 (mod 3n − 1), from which it follows that 9a = 1 + k(3n − 1) for some integer

k. Let x = ya = gab. Then

x9 =
(
g9a

)b
=

(
g1+k(3

n−1)
)b

=
(
g · gk(3n−1)

)b
= gb = y.

(3) Let F ⊆ E be fields and α, β ∈ E. Prove the equivalence of the following two statements:

(i) α and β have the same minimal polynomial over F .

(ii) For all f ∈ F [x], f(α) = 0 if and only if f(β) = 0.

(Aside: Either of these conditions could be used as the definition of α and β being conjugate

over F .)

Solution:
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First we will show that (i) implies (ii). Suppose (i) holds. We will show that (ii) holds.

Let f ∈ F [x]. Suppose f(α) = 0. We will show that f(β) = 0.

Let mα be the minimal polynomial of α over F , and let mβ be the minimal polynomial of

β over F . We are given that mα = mβ. Because f(α) = 0, it follows that mα divides f in

F [x]. So f = mαg = mβg for some g ∈ F [x]. Hence f(β) = mβ(β)g(β) = 0 · g(β) = 0.

Reversing the roles of α and β proves the other direction.

First we will show that (ii) implies (i). Suppose (ii) holds. We will show that (i) holds.

Let mα be the minimal polynomial of α over F , and let mβ be the minimal polynomial of

β over F .

We know that mα(α) = 0. So by (ii), we have that mβ(α) = 0. Therefore mα divides mβ

in F [x]. That is, mα · g = mβ for some g ∈ F [x].

Reversing the roles of α and β, we get that mβ · h = mα for some h ∈ F [x].

Hence mα · g · h = mα. But mα is irreducible, and F [x] is a UFD. Therefore gh is a unit.

In other words, gh = c for some constant polynomial c. Because minimal polynomials are

monic, it follows that c = 1, which gives us mα = mβ.


