ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2008
Brookfield*, Chabot, Shaheen

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Be sure to show enough work that your answers are ade-
quately supported.

Groups

(1)

(3)

Rings

(1)

Show that any group of order 15 is cyclic.

Answer: [See F11] Let G be a group of order 15. By Sylow, ns divides 15
and is congruent to 1 modulo 3. Thus n3 = 1, and G has a unique normal
subgroup H of order 3. Similarly, ns divides 15 and is congruent to 1 modulo
5. Thus n5 = 1, and G has a unique normal subgroup K of order 5. H N K
is a subgroup of H and a subgroup of K, so its order divides both 3 and 5,
and so HNK = {1} and H x K 2 HK < G. But |H x K| =15 = |G| and
so H x K 2 G. Now we recall that groups of order 3 and 5 are isomorphic to
Zs and Zs respectively and so G = 73 X 75 = Z5.

Let N and H be subgroups of a group G with N normal. Show that NH =
{nh|n € N and h € H} is a subgroup of G.

Answer: Of course, N # () and H # (), so NH # (. Suppose x1,7, € NH.
Then x1 = ni1hy and x9 = nghsy, with nqy,ny € N and hy,hy € H. Since N is
normal, hihy'ny ' € hihy' N = Nhihy' and so hihy'ny' = nshihy* for some
ng € N. This implies

$1I2_1 = nlhth_IHZ_l — n1n3h1h2_1 c NH.
By the subgroup criterion, NH < G.

Let p be a prime number and G a nontrivial finite p-group with center Z(G).

(a) Show that Z(G) is nontrivial.
Answer: Fraleigh, Theorem 37.4, p. 329 and Dummit and Foote, Theo-
rem 8, p. 125

(b) Let N be a nontrivial normal subgroup of G. Show that N N Z(G) is
nontrivial.
Answer: Since N is normal, it is a union of conjugacy classes of G. Such
a conjugacy class has either one element, in which case the element is
in NN Z, or has a multiple of p elements. Since the order of N is also
a multiple of p, this implies that there must be at least p one element
conjugacy classes in N. Hence N N Z has at least p elements.

Let R be a finite commutative ring (not necessarily with a multiplicative
identity) with more than one element and no zero divisors.
(a) Show that R has a multiplicative identity and so is a domain.
(b) Show that R is a field.
Answer: [See F07]
(a) For each nonzero a € R, define a function ¢, : R — R by ¢,(x) = ax for
all x € R. We show that ¢, is injective. Suppose that ¢,(z) = ¢4(y) for



(2)

Fields
(1)

some x,y € R. Then ar = ay and so a(x —y) = 0. Since a # 0 and R
has no zero divisors, this can only happen if xt —y = 0, that is, x = y.
Because R is finite and ¢, is injective, ¢, is also surjective. In particular,
there is some e € R such that ¢,(e) = a that is ae = a.
We show that e is the multiplicative identity element of R. Indeed, if
x € R, then a(x — ex) = ax — aex = axr — ax = 0, and, once again
since a is not a zero divisor, we get x = ex. 'This shows that e is the
multiplicative identity element of R, and so R is an integral domain.

(b) Since ¢, Is surjective, there is some element b € R such that ab = e, thus
a has a multiplicative inverse. Since this is true of any nonzero element

of R, R is a field.

Let R be the set of all matrices of the form {_z Z with a,b € R together

with the usual matrix addition and multiplication operations. Show that R is
isomorphic to C.

Answer: We know that every element of C can be written uniquely in the
form a + ib with a,b € R. So the function ¢ : R — C defined by

(3 ) -+

for a,b € R is a bijection. It remains to show that ¢ is a homomorphism. The
additive property is easy, so we confirm just the multiplicative property:

4 ([ ay bl} [ as bﬂ) ! ({ ajas — bbby arbs + b1a2:|)
—b a1| |—by as —(a1by + brag) ajas — bibs
= (arags — biby) +i(a1be + braz)
= (a1 +iby)(as + ibs)

o aq bl a9 bg
=L al)e (15 )
for all ai, g, bl, b2 S @

Let R be a commutative ring with identity and M an ideal of R. Show that
M is maximal if and only if, for every r € R\ M, there is an x € R such that
l—rze M. Note: R\M={reR|r¢&M}.
Answer: [See F12] Suppose that M is maximal. If r € R\ M, then the
ideal containing M and r is strictly bigger than M so is the whole ring R.
Specifically, (r) + M = R. In particular, 1 € (r) + M and so there are x € R
and m € M such that 1 = rx +m. Consequently 1 —rx =m € M.
Conversely, suppose that for every r € R\ M there is an x € R such that
1—7rx &€ M. Let I be an ideal such that M C I C R. If [ = M we are done.
Otherwise, I contains an element r that is not in M. By assumption, there
exists ¢ € R and m € M such that 1 = ro+m. This implies that 1 € (r)+ M
and so (r) + M = R. Because r € I we also have (r) + M C I, and so I = R.
This shows that M is maximal.

Let E be the splitting field of 2% — 3 over the rational numbers Q.



(a) Find [E : Q]. Explain.

(b) Show that the Galois group Gal(E/Q) is not abelian.

Answer: [See F14]

(a) The zeros of 2% — 3 are /3, A3, A2Y/3, N33, A/3 and \°\/3 where
A = e2™/6 Since A = (A/3)/V/3 € E, it follows that E = Q(\,v/3).

Consider

QCQ(W3) CQ\V3) =FE

6 ] 2 J

[ 12 |

By Eisenstein, 2° — 3 is irreducible over Q, so [Q(+/3) : Q] = 6. Because,
A is a zero of 12 — x + 1 € Q(v/3)[z], the degree of A over Q(v/3) is at
most 2. But Q(+v/3) C R and A € R, so \ has degree 2 over Q(+/3). This
implies [E : Q(v/3)] = 2 and [E : Q] = 12.

(b) Since E is a splitting field, Gal(E/Q) is a group of order 12. Each auto-
morphism in Gal(E/Q) sends /3 to one of its six conjugates v/3, A/3,
)\2\6/3, /\3\6/§, )\4{6/1 )\5\6/§, and sends A to one of its two conjugates
M\, \°. Moreover, since v/3 and A generate E over Q, each automorphism
is determined by where it sends these generators. In particular, there
are automorphisms r, s € Gal(E/Q) such that r(¥/3) = Av/3, 7(\) = ),
s(v/3) = V/3, s(\) = \°. With a bit of calculation, one can show that
|r| =6, |s| =2 and rs = sr~! and so Gal(E/Q) = Dys.

With less calculation, one finds that r(s(v/3)) = A\v/3, whereas s(r(v/3)) =
M\°+/3 which shows that rs # sr and so Gal(E/Q) is not abelian.

(2) Let E be an extension field of F' with [F : F| = 5.

(a) Show that F(a) = F(a3) for all a € E.

(b) Show that F(a) = F(a®) for all a € E.

Answer: [See F07] Reminder: deg(a, F') = [F(«) : F] divides [E : F| = 5. So

either deg(«, F) = [F(«) : F] =1 with F(a) = F and a € F, or deg(a, F) =

[F(a) : F] =5 with F(a) = E and o ¢ F.

(a) If « € F, then o® € F and F(a) = F(a?) = F. Otherwise, « is not in
F and so deg(a, F) = 5. Because of this, a® cannot be in F either. (If
o € F then the degree of a would be three or less.) Thus deg(a®, F) =5
and F(a) = F(a®) = E.

(b) By (a), F(a) = F(a®) = F((a?)) = F(a?).

(3) Let K be the splitting field of f(z) = 23 + 32% + 3z + 2 € Zs[z] over Zs.

(a) Is f irreducible over Zs?

(b) How many elements does K have?

(¢) Factor f completely in K|z].

Answer:

(a) No. f(3) =0 and so f(z) = (v — 3)(z* + = + 1).

(b) Since 3 € Zs, K is the splitting field for x* + x + 1. Because z? + = + 1
has no zeros in Zs it is irreducible over Zs and K has degree 2 over Zs.
This means that |K| = 5% = 25.



(c) Let a be a zero of t*+x+1 in K so that K = Zs(«). Since x—a is a factor
of > + 2 + 1, we can use long division to get the other factor: x +«a + 1.
The complete factorization of f is then f(x) = (x —3)(x — a)(x +a+1).



