
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2008

Brookfield*, Chabot, Shaheen

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Be sure to show enough work that your answers are ade-
quately supported.

Groups

(1) Show that any group of order 15 is cyclic.
Answer: [See F11] Let G be a group of order 15. By Sylow, n3 divides 15
and is congruent to 1 modulo 3. Thus n3 = 1, and G has a unique normal
subgroup H of order 3. Similarly, n5 divides 15 and is congruent to 1 modulo
5. Thus n5 = 1, and G has a unique normal subgroup K of order 5. H ∩K
is a subgroup of H and a subgroup of K, so its order divides both 3 and 5,
and so H ∩K = {1} and H ×K ∼= HK ≤ G. But |H ×K| = 15 = |G| and
so H ×K ∼= G. Now we recall that groups of order 3 and 5 are isomorphic to
Z3 and Z5 respectively and so G ∼= Z3 × Z5

∼= Z15.

(2) Let N and H be subgroups of a group G with N normal. Show that NH =
{nh | n ∈ N and h ∈ H} is a subgroup of G.
Answer: Of course, N 6= ∅ and H 6= ∅, so NH 6= ∅. Suppose x1, x2 ∈ NH.
Then x1 = n1h1 and x2 = n2h2, with n1, n2 ∈ N and h1, h2 ∈ H. Since N is
normal, h1h

−1
2 n−1

2 ∈ h1h−1
2 N = Nh1h

−1
2 and so h1h

−1
2 n−1

2 = n3h1h
−1
2 for some

n3 ∈ N . This implies

x1x
−1
2 = n1h1h

−1
2 n−1

2 = n1n3h1h
−1
2 ∈ NH.

By the subgroup criterion, NH ≤ G.

(3) Let p be a prime number and G a nontrivial finite p-group with center Z(G).
(a) Show that Z(G) is nontrivial.

Answer: Fraleigh, Theorem 37.4, p. 329 and Dummit and Foote, Theo-
rem 8, p. 125

(b) Let N be a nontrivial normal subgroup of G. Show that N ∩ Z(G) is
nontrivial.
Answer: Since N is normal, it is a union of conjugacy classes of G. Such
a conjugacy class has either one element, in which case the element is
in N ∩ Z, or has a multiple of p elements. Since the order of N is also
a multiple of p, this implies that there must be at least p one element
conjugacy classes in N . Hence N ∩ Z has at least p elements.

Rings

(1) Let R be a finite commutative ring (not necessarily with a multiplicative
identity) with more than one element and no zero divisors.
(a) Show that R has a multiplicative identity and so is a domain.
(b) Show that R is a field.
Answer: [See F07]
(a) For each nonzero a ∈ R, define a function φa : R→ R by φa(x) = ax for

all x ∈ R. We show that φa is injective. Suppose that φa(x) = φa(y) for
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some x, y ∈ R. Then ax = ay and so a(x − y) = 0. Since a 6= 0 and R
has no zero divisors, this can only happen if x − y = 0, that is, x = y.
Because R is finite and φa is injective, φa is also surjective. In particular,
there is some e ∈ R such that φa(e) = a that is ae = a.
We show that e is the multiplicative identity element of R. Indeed, if
x ∈ R, then a(x − ex) = ax − aex = ax − ax = 0, and, once again
since a is not a zero divisor, we get x = ex. This shows that e is the
multiplicative identity element of R, and so R is an integral domain.

(b) Since φa is surjective, there is some element b ∈ R such that ab = e, thus
a has a multiplicative inverse. Since this is true of any nonzero element
of R, R is a field.

(2) Let R be the set of all matrices of the form

[
a b
−b a

]
with a, b ∈ R together

with the usual matrix addition and multiplication operations. Show that R is
isomorphic to C.
Answer: We know that every element of C can be written uniquely in the
form a+ ib with a, b ∈ R. So the function φ : R→ C defined by

φ

([
a b
−b a

])
= a+ ib

for a, b ∈ R is a bijection. It remains to show that φ is a homomorphism. The
additive property is easy, so we confirm just the multiplicative property:

φ

([
a1 b1
−b1 a1

] [
a2 b2
−b2 a2

])
= φ

([
a1a2 − b1b2 a1b2 + b1a2
−(a1b2 + b1a2) a1a2 − b1b2

])
= (a1a2 − b1b2) + i(a1b2 + b1a2)

= (a1 + ib1)(a2 + ib2)

= φ

([
a1 b1
−b1 a1

])
φ

([
a2 b2
−b2 a2

])
for all a1, a2, b1, b2 ∈ Q.

(3) Let R be a commutative ring with identity and M an ideal of R. Show that
M is maximal if and only if, for every r ∈ R \M , there is an x ∈ R such that
1− rx ∈M . Note: R \M = {r ∈ R | r 6∈M}.
Answer: [See F12] Suppose that M is maximal. If r ∈ R \ M , then the
ideal containing M and r is strictly bigger than M so is the whole ring R.
Specifically, 〈r〉+M = R. In particular, 1 ∈ 〈r〉+M and so there are x ∈ R
and m ∈M such that 1 = rx+m. Consequently 1− rx = m ∈M .

Conversely, suppose that for every r ∈ R \M there is an x ∈ R such that
1− rx ∈M . Let I be an ideal such that M ⊆ I ⊆ R. If I = M we are done.
Otherwise, I contains an element r that is not in M . By assumption, there
exists x ∈ R and m ∈M such that 1 = rx+m. This implies that 1 ∈ 〈r〉+M
and so 〈r〉+M = R. Because r ∈ I we also have 〈r〉+M ⊆ I, and so I = R.
This shows that M is maximal.

Fields

(1) Let E be the splitting field of x6 − 3 over the rational numbers Q.
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(a) Find [E : Q]. Explain.
(b) Show that the Galois group Gal(E/Q) is not abelian.
Answer: [See F14]
(a) The zeros of x6 − 3 are 6

√
3, λ 6
√

3, λ2 6
√

3, λ3 6
√

3, λ4 6
√

3 and λ5 6
√

3 where
λ = e2πi/6. Since λ = (λ 6

√
3)/ 6
√

3 ∈ E, it follows that E = Q(λ, 6
√

3).
Consider

Q ⊆ Q( 6
√

3) ⊆ Q(λ, 6
√

3) = E

6 2

12

By Eisenstein, x6− 3 is irreducible over Q, so [Q( 6
√

3) : Q] = 6. Because,
λ is a zero of x2 − x + 1 ∈ Q( 6

√
3)[x], the degree of λ over Q( 6

√
3) is at

most 2. But Q( 6
√

3) ⊆ R and λ 6∈ R, so λ has degree 2 over Q( 6
√

3). This
implies [E : Q( 6

√
3)] = 2 and [E : Q] = 12.

(b) Since E is a splitting field, Gal(E/Q) is a group of order 12. Each auto-
morphism in Gal(E/Q) sends 6

√
3 to one of its six conjugates 6

√
3, λ 6
√

3,
λ2 6
√

3, λ3 6
√

3, λ4 6
√

3, λ5 6
√

3, and sends λ to one of its two conjugates
λ, λ5. Moreover, since 6

√
3 and λ generate E over Q, each automorphism

is determined by where it sends these generators. In particular, there
are automorphisms r, s ∈ Gal(E/Q) such that r( 6

√
3) = λ 6

√
3, r(λ) = λ,

s( 6
√

3) = 6
√

3, s(λ) = λ5. With a bit of calculation, one can show that
|r| = 6, |s| = 2 and rs = sr−1 and so Gal(E/Q) ∼= D12.
With less calculation, one finds that r(s( 6

√
3)) = λ 6

√
3, whereas s(r( 6

√
3)) =

λ5 6
√

3 which shows that rs 6= sr and so Gal(E/Q) is not abelian.

(2) Let E be an extension field of F with [E : F ] = 5.
(a) Show that F (α) = F (α3) for all α ∈ E.
(b) Show that F (α) = F (α9) for all α ∈ E.
Answer: [See F07] Reminder: deg(α, F ) = [F (α) : F ] divides [E : F ] = 5. So
either deg(α, F ) = [F (α) : F ] = 1 with F (α) = F and α ∈ F , or deg(α, F ) =
[F (α) : F ] = 5 with F (α) = E and α 6∈ F .
(a) If α ∈ F , then α3 ∈ F and F (α) = F (α3) = F . Otherwise, α is not in

F and so deg(α, F ) = 5. Because of this, α3 cannot be in F either. (If
α3 ∈ F then the degree of α would be three or less.) Thus deg(α3, F ) = 5
and F (α) = F (α3) = E.

(b) By (a), F (α) = F (α3) = F ((α3)3) = F (α9).

(3) Let K be the splitting field of f(x) = x3 + 3x2 + 3x+ 2 ∈ Z5[x] over Z5.
(a) Is f irreducible over Z5?
(b) How many elements does K have?
(c) Factor f completely in K[x].
Answer:

(a) No. f(3) = 0 and so f(x) = (x− 3)(x2 + x+ 1).
(b) Since 3 ∈ Z5, K is the splitting field for x2 + x + 1. Because x2 + x + 1

has no zeros in Z5 it is irreducible over Z5 and K has degree 2 over Z5.
This means that |K| = 52 = 25.
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(c) Let α be a zero of x2+x+1 in K so that K = Z5(α). Since x−α is a factor
of x2 + x+ 1, we can use long division to get the other factor: x+ α+ 1.
The complete factorization of f is then f(x) = (x− 3)(x−α)(x+α+ 1).


