
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2009

Brookfield*, Krebs, Shaheen

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Be sure to show enough work that your answers are ade-
quately supported.

Groups

(1) Prove that Q is not a cyclic group.
Answer: Of course, 〈0〉 = {0} 6= Q. And if 0 6= q ∈ Q, Then 〈q〉 = {nq | n ∈
Z} is the set of all integer multiples of q. But not all rational numbers are
integer multiples of q, for example, q/2 is not. (If q/2 = nq for some n ∈ Z,
then q = 0 contrary to assumption.) Thus Q is not equal to any of its cyclic
subgroups, that is, Q is not cyclic.

(2) Let G be a group of order 30. Show that G is not simple.
Answer: By Sylow, n3 ∈ {1, 10} and n5 ∈ {1, 6}. But if n3 = 10 and n5 = 6,
then G would have 20 elements of order 3 and 24 elements of order 5—clearly
impossible. Thus, either n3 = 1 and G contains a unique normal subgroup
of order 3, or n5 = 1 and G contains a unique normal subgroup of order 5.
Either way, G is not simple.

(3) Suppose that G is a nonabelian group of order p3 where p is a prime number.
In the problems below you may use the following facts: (A) If G is a group
with center Z and G/Z is cyclic, then G is abelian; (B) If a group G has order
p2 then G is abelian.
(a) Let Z be the center of G. Prove that |Z| = p.

Answer: By Lagrange, |Z| = 1, p, p2 or p3. Using the class equation
in the standard way we know that |Z| 6= 1. And |Z| = p3 would imply
Z = G and hence G is abelian, contrary to assumption. And if |Z| = p2

then |G/Z| = p and so G/Z is cyclic which, by (A), implies G is abelian,
contrary to assumption.

(b) Let G′ be the commutator subgroup of G. Prove that G′ = Z.
Answer: |G/Z| has order p2 so is an abelian group by (B). This implies
G′ ≤ Z and also |G′| = 1 or |G′| = p. But G′ = {1} would imply that G
is abelian, contrary to assumption. So we are left with |G′| = p and so
G′ = Z.

Rings

(1) Let R be a commutative ring with identity 1. For each n ∈ N, let Ii be a
proper ideal of R such that I1 ⊆ I2 ⊆ I3 ⊆ . . . Show that J =

⋃
n∈N In is a

proper ideal of R.
Answer: [See F02] Let x ∈ J and r ∈ R. Then x ∈ In for some n ∈ N, and so
rx ∈ In ⊆ J . Thus J is closed under multiplication by elements of R.

Let x, y ∈ J . Then x ∈ In and y ∈ Im for some n,m ∈ N, and so x, y ∈
Imax(m,n). Hence x− y ∈ Imax(m,n) ⊆ J . Thus J is closed under subtraction.

These two closure conditions imply that J is an ideal of R. If J is not
proper, then J = R and 1 ∈ J . But then 1 ∈ In for some n ∈ N, which means
that In = R, contradicting the properness of In. Thus J must be proper.
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(2) Let R = M2(F ) be the ring of 2 × 2 matrices over a field F with the usual
operations. Show that the only (two-sided) ideals of R are {0} and R itself
(that is, R is a simple ring).
Answer: Let J be a two-sided ideal of R. Suppose that J 6= {0} and contains

a nonzero matrix A =

[
a11 a12
a21 a22

]
∈ J . At least one of the entries of A must

be nonzero. If a11 6= 0, then[
1 0
0 0

] [
a11 a12
a21 a22

] [
1 0
0 0

]
+

[
0 0
1 0

] [
a11 a12
a21 a22

] [
0 1
0 0

]
=

[
a11 0

0 a11

]
∈ J

and so I ∈ J and J = R. Similar arguments work if a12 6= 0, a21 6= 0 or
a22 6= 0.

(3) Let I be the ideal of Z[x] generated by 2 and x. Show that I is not a principal
ideal.
Answer: First we notice that any polynomial in I has the form f(x) = 2g(x)+
xh(x) for some g, h ∈ Z[x]. In particular, f(0) = 2g(0) is an even integer.

Now suppose that I is principal, that is, I = (f) for some f ∈ Z[x]. Then,
in particular, 2 ∈ I = (f) and so 2 = g(x)f(x) for some g ∈ Z[x]. But
deg g + deg f = deg 2 = 0, so deg g = deg f = 0 and g and f are constant
polynomials, that is g, f ∈ Z. From above, f must be ±2, and so I =
(f) = (2) = {2h(x) | h(x) ∈ Z[x]}, that is, I is the set of polynomials whose
coefficients are all even. But then x 6∈ I, a contradiction. Thus we have shown
that I is not a principal ideal.

Fields

(1) Consider f(x) = x3 + 3x2 + 3x + 2 ∈ Z5[x]. Is f irreducible over Z5? Let K
be the splitting field of f over Z5. Factor f completely over K[x].
Answer: [See F08] f(3) = 0 and so f(x) = (x+2)(x2 +x+1). Since x2 +x+1
has no roots in Z5, this polynomial is irreducible. Then K = Z5(α) where
α2 + α + 1 = 0. The other root of x2 + x + 1 in K is −1 − α and so f(x) =
(x+ 2)(x− α)(x+ 1 + α) in K[x].

(2) Find the Galois group of f(x) = x4 − 2 over Q. Show that it is not abelian.
Answer: Let α = 4

√
4. Then the other roots of f are iα, −α and −iα. The

splitting field of f is F = Q(α, i). Since f is irreducible over Q (by Eisenstein
with p = 2, for example), α has degree 4 over Q, and [Q(α) : Q] = 4. Since
i 6∈ Q(α) ⊆ R, i has degree 2 over Q(α), and hence [F : Q] = 8. By Galois
Theory, the Galois group of f has order 8 and it is isomorphic to a subgroup
of S4. But all such subgroups of S4 are isomorphic to the dihedral group of
order 8, D8, a nonabelian group.

(3) Let p be a prime number, and let Zp be the field of integers modulo p. Let E
be a finite extension field of Zp. Let n be a positive integer. Let

S =
∑
x∈E

xn.

(a) Let σ ∈ Gal(E/Zp). Show that σ(S) = S.
Answer: σ is, among other things, a bijection from E to E. So it simply
permutes the terms of the sum defining S. Thus σ(S) = S.
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(b) Show that S ∈ Zp.
Answer: Every finite extension of a finite field is Galois, and so by defi-
nition of a Galois extension, the fixed field of Gal(E/Zp) is Zp. By (a),
S is in this fixed field.


