
ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2018

Brookfield, Demeke, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Indicate CLEARLY which problems you want us to grade—otherwise, we
will select which ones to grade, and they may not be the ones that you want us to grade.
Be sure to show enough work that your answers are adequately supported.

Notation: Q denotes the rational numbers; Z is the set of integers; Zn is the set of integers
modulo n; and C is the set of complex numbers.

Groups

(G1) Let G be a cyclic group. Let H be a subgroup of G. Prove that H is cyclic.
Answer: [See S08 and S13] Fraleigh, Theorem 6.6. Dummit and Foote, Theorem 7,
p. 58.

(G2) Let G be a finite group and H be a subgroup of G.
(a) Prove that for any g ∈ G, that gH and H have the same size.
(b) Prove for any a, b ∈ G, that either aH ∩ bH = ∅ or aH = bH.
(c) Use (a) and (b) to prove Lagrange’s theorem.
Answer: Fraleigh, Theorem 10.10. Dummit and Foote, Theorem 8, p. 89.

(G3) Let G be a group of order 10. Show that G ∼= Z10 or G ∼= D10. Here D10 = 〈r, s |
r5 = s2 = 1, rsrs = 1〉 is the dihedral group of order 10.
Answer: [Compare S13 and S17] The only divisors of |G| are {1, 2, 5, 10}. If G has
an element of order 10, then G is cyclic and G ∼= Z10. Otherwise, all nonidentity
elements of G have order 5 or 2.

By the Sylow theorems, n5 divides |G| and n5 ≡ 1 mod 5, so n5 = 1. Thus G has
a unique normal subgroup N of order 5 and all elements of order 5 are in N . Since
N ∼= Z5, there are 4 elements of order 5 in G. The other 5 elements of G must have
order 2.

Let r ∈ G be any element of order 5 and s ∈ G an element of order 2. Then
rs ∈ G, so |rs| ∈ {1, 2, 5}. But if |rs| = 1 or |rs| = 5, then rs ∈ N which implies
s = r−1(rs) ∈ N , contradicting |s| = 2. This means that |rs| = 2, and rsrs = 1
which can be rewritten as rs = sr−1, showing that G ∼= D10.

Rings

(R1) Let R and S be commutative rings with multiplicative identities. Show that I is an
ideal of R× S if and only if I = A×B where A is an ideal of R and B is an ideal of
S. [Hint: Consider the sets {x ∈ R | (x, 0) ∈ I} and {y ∈ S | (0, y) ∈ I} .]
Answer: See S13.

(R2) Let R be a commutative ring with identity 1 6= 0. Let M be an ideal of R with
M 6= R. Prove that if M is a maximal ideal of R, then R/M is a field. Answer: See
S08 and F14. Fraleigh, Theorem 27.9 Dummit and Foote, Proposition12, p. 254.

(R3) Suppose that D is a domain with 2 6= 0 and 0 6= a ∈ D. Show that the equation
x2 = a has either no solutions or exactly two solutions in D. In the second case, if
we denote one of the solutions by v, then the other solution is −v.



Answer: If x2 = a has no solutions, then we are done. Otherwise, suppose that v ∈ D
is a solution of x2 = a. We need to show that v and −v are distinct and that these
elements are the only solutions of x2 = a.

Suppose first that v = −v. Then 2v = 0 and, since D is a domain and 2 6= 0, we
have v = 0. But v = 0 would imply a = v2 = 0, contrary to assumption. Hence v
and −v are distinct solutions of x2 = a.

Now suppose that u is some (perhaps third) solution of x2 = a, then u2 = v2 and
so (u− v)(u+ v) = 0. Since D is a domain, we have u− v = 0 or u+ v = 0, that is,
u = v or u = −v. Therefore there are exactly two solutions of x2 = a.

Fields

(F1) Let E be the splitting field of f(x) = x3 − 5 over Q. Is Gal(E/Q) abelian? Find a
familiar group (like Zn, Sn, Dn, ...) that is isomorphic to Gal(E/Q).
Answer: [See F10 and S17] The roots of x3 − 5 are 3
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This group is isomorphic to S3, for example, because it is not abelian: φ1(φ3(
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(F2) Prove that every finite integral domain is field. Answer: Fraleigh, Theorem 19.11.
Dummit and Foote, Corollary 3, p. 228.
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Answer: [Fall 14] Since Q(
√

3) obviously contains a cube root of 3, it suffices to show
that Q(

√
2) does not contain a cube root of 3.

Suppose to the contrary that (a + b
√

2)2 = 3 for some a, b ∈ Q. Then a2 + 2b2 +
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2 = 3. We consider three cases: If both a and b are nonzero, then this equation
can be rewritten as

√
2 = (3 − a2 − 2b2)/2ab. If a = 0, then 2b2 = 3 and hence
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is rational. That leaves only the case a = b = 0, which can easily be eliminated since
02 6= 3.
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