ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2008
Chabot, Krebs, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups,
rings, and fields. Be sure to show enough work that your answers are adequately supported.

Notation: If n is a positive integer, let Z, denote the integers modulo n. Let @Q denote the
rational numbers.

Groups

1. Show that all groups of order 45 are abelian.

Answer: Let G be a group of order 45. By Sylow, ng divides 45 and is congruent to
1 modulo 3. The only such number is ng3 = 1, and so G contains a normal subgroup
H of order 9. Similarly, ns divides 45 and is congruent to 1 modulo 5. The only such
number is ns = 1, and so G contains a normal subgroup K of order 5. As usual,
HNK ={l} soHx K=2HK <G. But |Hx K|=45= |G| and so H x K = G.
Since all groups of groups of order 5 and 9 are abelian, GG is also abelian.

2. Let G be a cyclic group and H a subgroup of G. Prove that H is cyclic.

Answer: [See S13] Suppose that G = {(a) = {a* | k € Z}. Let H be a subgroup of G. If
H = {1} then H = (1) and so H is cyclic. Otherwise, H contains at least one element
of the form a* with k € N,

Let n € N be the least natural number such that ™ € H. Then (a") < H is automatic.
We prove the opposite inclusion: Suppose that a® € H. Since n € N, there are ¢, € Z
such that k = gqn +r and 0 <r <n. Then a" = a*~ 7 = a*(a")~9. Because a™ and a”
are in H, so is a”. But, by the choice of n, this is only possible if r = 0. Thus k = gn
and a® = (a™)? € (a™). This shows that H = (a™) and that H is cyclic.

3. Let G be a finite group with |G| > 1, and let Inn(G) be the group of inner automor-
phisms of G. Show that if G is isomorphic to Inn(G), then |G| has at least two distinct
prime factors. (Hint: Do a proof by contradiction.)

Answer: Reminder: For g € G the function ¢, : G — G defined by ¢,(x) = gzg™" for
all x € G is an automorphism of G. ¢4 Is called an inner automorphism, the set of
inner automorphisms, Inn(G), is a subgroup of the group of all automorphisms of G.
The function ® : G — Inn(G) defined by ®(g) = ¢, for all g € G is a surjective group
homomorphism. The kernel of ® is Z = Z(G), the center of G, so Inn(G) = G/Z. See
Fraleigh, Definition 14.15, p. 141 and Dummit and Foote, Section 4.4, p. 133.

Suppose, to the contrary, that |G| = p" for some prime p and n € N. Since G is
a p-group, the center of G, Z, is nontrivial (Fraleigh, Theorem 37.4, p. 329). From
the above discussion, this means that ® : G — Inn(G) is not injective, in particular,
|Inn(G)| = |G|/|Z] < |G|. Hence Inn(G) and G cannot be isomorphic.



Rings

1. Let p be a prime number. Let D : Z, — Z, be a function such that D(a - b) =
a-D(b) +b-D(a) for all a,b € Z,. Prove that D is the zero map.

Answer: Lemma: For all a € Z,, D(a") = na"'D(a). Proof: By induction. For
n = 1, the claim is clear. Suppose that the claim is true for some n. Then

D(a"*") = D(a-a") = a-D(a")+a"-D(a) = a(na""'D(a)) +a"-D(a) = (n+1)a"D(a)

which proves the claim in the next case. [

To finished the question we use the facts that a” = a and pa = 0 for all a € Z,:

D(a) = D(a”) = pa®’~'D(a) = 0.

2. Let D be a Euclidean domain and a,b,c € D. Prove:

(a) If a divides bc and GC'D(a,b) = 1, then a divides c.

(b) If a is irreducible, then a is prime.
Answer:

(a) Suppose that GC'D(a,b) = 1. This means that that if d is a common divisor of a
and b, then d divides 1, that is d is a unit of D (Fraleigh p. 395). Since Euclideans
domains are PIDs, there is some e € D such that Da + Db = De. Then a € De
and b € De which means that e is a common divisor of a and b. By assumption e
is a unit and so Da + Db = De = D. In particular, there are x,y € D such that
ax +by =1 (See also Dummit and Foote, Theorem 4, p. 275). Hence, if a divides
bc, then a divides bcy + acx = c.

(b) Suppose that a is irreducible. This means that a is not a unit, but, if a = be, then
either b is a unit or ¢ is a unit. To show that a is prime we need to show that if
a divides bc, then either a divides b or a divides c.

Suppose that a divides be. If a divides b we are done. Otherwise, a does not
divide b. Let d be a common divisor of a and b. Then a = de for some e € D.
Since a is irreducible, either e or d is a unit. But if e is a unit, then a divides d
(ae™! = dee™ = d) which implies that a divides b contrary to assumption. This
means that d is a unit. Since the only common divisors of a and b are units,

GCD(a,b) =1, then, by (1), a divides c.

3. Let R be a commutative ring with identity 1. Prove that an ideal M is maximal if and
only if R/M is a field.

Answer: Fraleigh, Theorem 27.9, p. 247. Dummit and Foote, Proposition 12, p. 254.



Fields

1. Let Q be the field of rationals and let p(z) = 23 — 4z + 5. Assume « is a root of p(x).

(a) Prove that p(z) is irreducible over Q.
(b) Find a,b,c € Q such that (o + 1)7! = a + ba + ca?.

Answer:

(a) By the Rational Zeros Theorem (or Fraleigh, Corollary 23.12, p. 215), the only
possible rational zeros of p are +5 and +1. It is easy to check that these integers
are not, in fact, zeros of p and so p has no rational zeros and is irreducible over Q.

(b) Dividing p by x + 1 using long division we get p(x) = (22 —x — 3)(z + 1) + 8.
Setting © = « in this and using p(a) = 0, we get 0 = (a®> — a — 3)(a + 1) + 8.
This can be written as

! :—1(a2—04—3)
a+1 8
2. Let F be a field. Let G be a finite subgroup of the group of units of F'. Prove that
G is cyclic. (Hint: Do a proof by contraction. First show that G is a finite abelian
group. To get a contradiction, find a positive integer n such that the polynomial 2" —1

has more than n zeroes. You will need to use a major theorem about finite abelian
groups. )
Answer: Dummit and Foote, Proposition 18, p. 314. Since multiplication in F' is

commutative, G is an abelian group. By the Classification Theorem for Finite Abelian
Groups, G is isomorphic to a direct product of cyclic groups:

~ ...
G = Zp‘fl X Zpgz X X szk

where py,pa, ..., pr are prime and ay,as,...,a; € N. If there is only one prime, or if
all the primes are distinct, then G is cyclic. If G is not cyclic, then at least two of the
primes are equal. WLOG, suppose that p; = ps = p. Since Zy and Zy each have
subgroups isomorphic to Z,, G has a subgroup H isomorphic to Z, x Z,. The order
of Z, x Z, is p* and each element x € Z, x Z, satisfies px = 0. So H has order p* and
each element h € H satisfies h? = 1. But this implies that P — 1 has at least p* zeros
in F', contrary to Lagrange’s Theorem.

3. Let & = €2™/™ be a primitive n-th root of unity. Prove that Gal(Q(¢)/Q) = ZX. Note:
Z,) is the group of units under multiplication in Z,.

Answer: Dummit and Foote, Theorem 26, p. 596.



