
ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2011

Brookfield*, Krebs, Shaheen

Directions: Answer 5 questions only. You must answer at least one from each of
groups, rings, and fields. Be sure to show enough work that your answers are ade-
quately supported.

Groups

(1) Let p be a prime number of the form 4k + 1 for some integer k. Define
f : Zp → Zp by f(x) = xp−2.
(a) Prove that f is bijective. (Hint: Prove that f is its own inverse.)

Answer: By Fermat, xp = x for all x ∈ Zp. So

f(f(x)) = f(xp−2) = (xp−2)p−2 = xp
2−4p+4 = (xp)p−4x4 = xp−4x4 = xp = x

for all x ∈ Zp. Since f ◦ f is the identity function on Zp, f is its own
inverse and, in particular, is a bijection.

OR
If x 6= 0, then x is a unit and by Fermat xp−1 = 1. Hence f(x) =
xp−2 = x−1 in this case. Consequently f(f(x)) = (x−1)−1 = x. Since,
also f(0) = 0 and so f(f(0)) = 0, we have f(f(x)) = x for all x ∈ Zp.

(b) Regarding f as an element of the symmetric group Sp, prove that f is an
odd permutation. (Hint: How many fixed points does f have?)
Answer: Since f is its own inverse, f has order 2 in Sp, and f must be
a product of disjoint transpositions. (Any element of Sn is a product of
disjoint cycles. The order of such an element is the lcm of the lengths of
the cycles.) The number of these transpositions is one half the number
of elements of Zp that are not fixed by f .
Certainly 0 is fixed by f . And if x 6= 0 is fixed by f , then x−1 = x, that
is x2 = 1, and x = ±1 (since p 6= 2). Thus there are three elements of
Zp that are fixed by f , and (4k + 1) − 3 = 2(2k − 1) that are not fixed
by f . Thus f is a product of 2k − 1 transpositions, an odd number of
transpositions, and so f is odd.

(2) Let G and H be groups and φ : G → H be a group homomorphism. Prove
that G/ ker(φ) is isomorphic to φ[G] where

φ[G] = {φ(x) | x ∈ G}

is the image of φ.
Answer: Fraleigh, Theorem 14.11

(3) Show that there are no simple groups of order 56.
Answer: Let G be a group of order 56 = 23 · 7. By the Sylow theorems, G
has n7 = 1 or n7 = 8 Sylow-7 subgroups, and n2 = 1 or n2 = 7 Sylow-2
subgroups. If n7 = 1, then the Sylow-7 subgroup is normal and so G is not
simple. Otherwise, if n7 = 8, then G has 8 distinct Sylow-7 subgroups of order
7. The intersection of any pair of these subgroups is trivial, and each contains
6 elements of order 7. So there are 6 · 8 = 48 elements of order 7 in G. This
leaves 8 elements of G that do not have order 7. These elements must form a
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unique Sylow-2 subgroup, which is therefore a normal subgroup of G. Once
again, this means that G is not simple.

Rings

(1) Let R be a commutative ring with identity such that x2 = x for all x ∈ R. Let
f : R → R be a function such that f(ab) = a · f(b) + b · f(a) for all a, b ∈ R.
Prove that f(a) = 0 for all a ∈ R.
Answer: Using x2 = x for all x ∈ R, we get 2a = (2a)2 = 4a2 = 4a and
cancelling 2a from this gives 0 = 2a. Then f(a) = f(a2) = a ·f(a) +a ·f(a) =
2af(a) = 0f(a) = 0.

(2) Let R and S be commutative rings. Let I be an ideal of R. Let φ : R→ S be
an onto ring homomorphism. Prove that

φ[I] = {φ(x) | x ∈ I}

is an ideal of S.
Answer: Let J = φ[I]. Since φ is, among other things, a group homomorphism
from (R,+) to (S,+), we know that J is an additive subgroup of (S,+).

Let s ∈ S and j ∈ J . Then j = φ(i) for some i ∈ I and, since φ is surjective,
s = φ(r) for some r ∈ R. Because I is an ideal, ri ∈ I and ir ∈ I. Then
sj = φ(r)φ(i) = φ(ri) ∈ φ[I] = J and similarly, js ∈ J . Thus J is an ideal of
S.

(3) Let f be a monic polynomial with integer coefficients. Show that any rational
root of f is an integer.
Answer: Fraleigh Theorem 23.12.

Fields

(1) Let f(x) be a polynomial with integer coefficients. Show that α =
1 +
√

5

2
is

a root of f(x) if and only if β =
1−
√

5

2
is a root of f(x).

Answer: Since
√

5 is not rational, neither are α and β, and so the degree of α
and β over Q is bigger than 1. On the other hand, both α and β are a roots
of p(x) = x2 − x − 1, a monic polynomial in Q[x] of degree 2. So p is the
minimal polynomial for both α and β over Q.

If α is a root of f(x) ∈ Q[x], then p divides f , and then β is a root of f
too. Similarly, if β is a root then so is α.

(2) Let F and E be fields and φ : F → E be a ring homomorphism.
(a) Prove that the only two ideals of F are F and {0}.
(b) Prove that φ is one-to-one if and only if φ is not the zero map.
Answer:

(a) Let I be an ideal of F and suppose that I is not {0}. Then I contains a
nonzero element a. Since F is a field, a−1 exists. Now for any r ∈ F we
have r = r(1) = (ra−1)a ∈ I. This implies that F ⊆ I, and so I = F .

(b) If φ is one-to-one, then φ(1) 6= φ(0) = 0 so φ is not the zero map.
Conversely, if φ is not the zero map, then kerφ is a proper ideal of F . By
(a), kerφ = {0}. This implies that φ is injective.

(3) Let F be a field and f ∈ F [x] a monic polynomial. Suppose that E is the
splitting field for f over F so that f(x) = (x − α1)(x − α2) · · · (x − αn) has
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roots α1, α2,. . . , αn in E. Let φ be an automorphism of E over F . Show that
φ restricts to a permutation of the set A = {α1, α2, . . . , αm} ⊆ E.
Answer: We need to show that φ(A) ⊆ A. If α ∈ A, then f(α) = 0. Writing
f(x) = a0 + a1x+ a2x

2 + · · ·+ xn, we have

a0 + a1α + a2α
2 + · · ·+ αn = 0.

Applying the automorphism φ to both sides of this equation and using the
homomorphism properties of φ we get

a0 + a1φ(α) + a2φ(α)2 + · · ·+ φ(α)n = 0,

which shows that φ(α) is a root of f and hence φ(α) ∈ A. Therefore φ restricts
to a function from A to A.

By definition, φ is injective on E, and so is also injective when restricted to
A. Since A is finite, this means φ, restricted to A, is surjective.


