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Department of Mathematics

Master’s Degree Comprehensive Examination

Analysis Spring 2023

Da Silva*, Gutarts, Krebs

Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Spring 2023 #1. Use the definition of continuity to show that the

function

f(x) =

1 if x ∈ Q

0 otherwise

is not continuous anywhere on R.

Proof. See https://proofwiki.org/wiki/Dirichlet_Function_is_

Discontinuous. □

Spring 2023 #2. Let an be the sequence

an =

1− 1
2n

if n is odd,

0 otherwise.

Prove that

lim inf an = 0 and lim sup an = 1.

Proof. For all positive integers k, let

Sk = {ak, ak+1, ak+2, . . . } = {aj | j ≥ k}.

So:

S1 = {a1, a2, a3, . . . } =

{
1− 1

2
, 0, 1− 1

8
, 0, 1− 1

32
, . . .

}

S2 = {a2, a3, a4, . . . } =

{
0, 1− 1

8
, 0, 1− 1

32
, 0, . . .

}

https://proofwiki.org/wiki/Dirichlet_Function_is_Discontinuous
https://proofwiki.org/wiki/Dirichlet_Function_is_Discontinuous
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S3 = {a3, a4, a5, . . . } =

{
1− 1

8
, 0, 1− 1

32
, 0, 1− 1

27
, . . .

}
Etc.

Note that for all k, we have that supSk = 1 and inf Sk = 0.

Therefore

lim inf an = sup{inf Sk | k ∈ N} = sup{0} = 0, and

lim sup an = inf{supSk | k ∈ N} = sup{1} = 1. □

Spring 2023 #3. Let (an) be a sequence of real numbers.

a. State the definition of a Cauchy sequence.

b. Prove that if the sequence (an) converges, then it is a Cauchy

sequence.

Solution:

a. A sequence an is Cauchy if, for every ϵ > 0, there exists a natural

number N such that

|an − am| < ϵ

whenever n,m ≥ N .

b. Assume that an is a convergent sequence. Then there exists a

number L such that, for any ϵ > 0, there exists a natural number N

for which

|an − L| < ϵ

2
whenever n ≥ N . Consider now the quantity

|an − am|
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for positive integers m,n. Applying the Triangle Inequality, we have

that

|an − am| = |(an − L) + (L− am)|

≤ |an − L|+ |am − L|.

Since we assumed the sequence was convergent, then for any ϵ > 0, we

can find N so that

|an − L| < ϵ

2
and |am − L| < ϵ

2

for n,m ≥ N , which implies that

|an − am| < ϵ

for n,m ≥ N . It follows that an is a Cauchy sequence.

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

Spring 2023 #4. Let H be a Hilbert space with inner product ⟨·, ·⟩,
and let y, z ∈ H. Define T : H → H by

T (x) = ⟨x, y⟩z.

a. Prove that T is a linear transformation.

b. Prove that T is bounded.

c. Prove that T is continuous. Hint: Use parts (a) and (b).

d. Prove that ∥T∥ ≤ ∥y∥∥z∥. Here ∥T∥ denotes the operator

norm of T . Hint: Use your answer to part (b).

Solutions:
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a. For all x1, x2 ∈ H, we have that

T (x1 + x2) = ⟨x1 + x2, y⟩z = ⟨x1, y⟩z + ⟨x2, y⟩z = T (x1) + T (x2).

Here we used linearity of inner products in the first factor, as well

as a distributive property (which holds in all vector spaces, including

Hilbert spaces).

Let F be the field over which H is a vector space.

For all x ∈ H, λ ∈ F, we have that

T (λx) = ⟨λx, y⟩z = λ⟨x, y⟩z = λT (x).

Here we used linearity of inner products in the first factor, as well as

the associative property for scalar multiplication in vector spaces.

b. Let v ∈ H such that ∥v∥ = 1. Then

∥T (v)∥ = ∥⟨v, y⟩z∥

= |⟨v, y⟩| · ∥z∥ by def. of norm

≤ ∥v∥ · ∥y∥ · ∥z∥ by the Cauchy-Schwarz inequality

= ∥y∥ · ∥z∥

c. Every bounded linear transformation is continuous.

d. The answer to (b) shows that this is true.

Spring 2023 #5. Let f(x) : R → R be the function defined by setting

f(x) =

1 + x
π

if − π ≤ x < 0,

1− x
π

if 0 ≤ x < π,

and then extending the result 2π-periodically.

a. Find the trigonometric Fourier series for f(x).



6

b. Use the result from part (a) to find the sum of the series

∞∑
n=1

1− (−1)n

n2
,

and prove that your answer is correct.

Solution:

a. In general, the Fourier series for a function f(x) is given by

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where the an and bn are given by

a0 =
1

π

∫ π

−π

f(x) dx

an =
1

π

∫ π

−π

f(x) cos(nx) dx

bn =
1

π

∫ π

−π

f(x) sin(nx) dx

for n = 1, 2, 3, . . . (Note: Different books use slightly different formulas

for this.) Since f(x) is an even function, the product f(x) sin(nx) is

odd, which forces bn = 0 for all n. As for the an, you should be able to

check that a0 = 1 and

an =
2 (1− (−1)n)

π2n2

for n = 1, 2, 3, . . . We thus conclude that the trigonometric Fourier

series for f(x) is

1

2
+

∞∑
n=1

(
2 (1− (−1)n)

π2n2

)
cos(nx).

b. Observe that f is continuous. (You can check at x = 0 that the two

“pieces” in the graph of f match up.)
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Moreover, putting aside the single term a0/2 = 1/2, the sum of the

other Fourier coefficients is

4

π2
+

4

π232
+

4

π252
+ · · · = 4

π2

(
1 +

1

32
+

1

52
+ · · ·

)

The factor inside the parentheses includes every other term of the p-

series 1/n2, which is convergent. So by the Direct Comparision Test

for series, we have that the sum of the absolute values of the Fourier

coefficients converges. Therefore the Fourier series for f converges ab-

solutely to f . Therefore it converges pointwise to f as well.

Thus, using the result from part (a) with x = 0, we obtain

1 = f(0) =
1

2
+

∞∑
n=1

2 (1− (−1)n)

π2n2
,

hence
π2

4
=

∞∑
n=1

1− (−1)n

n2
.

Spring 2023 #6. Let H be a Hilbert space. Suppose that H is the

orthogonal direct sum of two closed subspaces M and N . Moreover,

suppose that E is an orthonormal basis for M , and suppose that F is

an orthonormal basis for N . Prove that E ∪F is an orthonormal basis

for H.

Solution:

See #3 from Quiz 5 Take 1 here:

https://drive.google.com/file/d/1nJOpjo3RLl-LHZquBTLlemthhKPYzarY/

view?pli=1

Spring 2023 #7. Let I be the interval [a, b] for some a < b, and let

C(I) = {f : I → R : f is continuous}.

https://drive.google.com/file/d/1nJOpjo3RLl-LHZquBTLlemthhKPYzarY/view?pli=1
https://drive.google.com/file/d/1nJOpjo3RLl-LHZquBTLlemthhKPYzarY/view?pli=1
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For f, g ∈ C(I), define

d(f, g) = sup
x∈I

|f(x)− g(x)|.

Show that d defines a metric on C(I).

Solution: To show that d is a metric, we must show that for any func-

tions f, g, h ∈ C(I), the following properties hold:

a. d(f, g) ≥ 0;

b. d(f, g) = 0 if and only if f = g;

c. d(f, g) = d(g, f);

d. d(f, g) ≤ d(f, h) + d(h, g).

In addition, we must show that d is well-defined function from C(I)×
C(I) to R, i.e., that for all continuous functions f, g on I, we have that

d(f, g) is a (finite) real number. (Side comment: If I were an open

instead of closed interval, this property would fail. Consider functions

like 1/x.)

Because f and g are continuous, so is the function f − g defined by

(f−g)(x) = f(x)−g(x). The absolute value of a continuous function is

continuous, so the function |f(x)− g(x)| is also continuous. Moreover,

I is compact, because I is a closed interval. Thus, by the Extreme

Value Theorem, we have that |f(x) − g(x)| attains a maximum on I.

Hence d(f, g) is a (finite) real number.

Now we prove properties (a), (b), (c), and (d).

Let f, g ∈ C(I). It is obvious that

0 ≤ |f(x)− g(x)| ≤ sup
x∈I

|f(x)− g(x)|

by definition of supremum. Thus, property (a) holds.
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Next, assume that d(f, g) = 0, so that

0 = sup
x∈I

|f(x)− g(x)|.

Thus, for any x ∈ I, we have

|f(x)− g(x)| = 0,

which implies that f = g. Conversely, if we assume that f = g, then

d(f, g) = sup
x∈I

|f(x)− g(x)| = sup
x∈I

|f(x)− f(x)| = 0.

Thus, property (b) holds.

To show that property (c) holds, we observe that

|f(x)− g(x)| = |g(x)− f(x)|

by properties of absolute value. Thus, we may conclude that

d(f, g) = sup
x∈I

|f(x)− g(x)| = sup
x∈I

|g(x)− f(x)| = d(g, f).

Finally, we show that property (d) holds. First, we observe that by the

Triangle Inequality, we have

|f(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)|

≤ sup
x∈I

|f(x)− h(x)|+ sup
x∈I

|h(x)− g(x)|

= d(f, h) + d(h, g)

by definition of the supremum. Thus, d(f, h) + d(h, g) is an upper

bound for |f(x) − g(x)|. By definition, it must be greater than the

least upper bound, from which we obtain that

d(f, g) = sup
x∈I

|f(x)− g(x)| ≤ d(f, h) + d(h, g),

as desired.


