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Abstract

Let G be a graph with diameter d. An antipodal la-

beling of G is a function f that assigns to each vertex a
non-negative integer (label) such that for any two ver-

tices u and v, |f(u) − f(v)| ≥ d − d(u, v), where d(u, v)
is the distance between u and v. The span of an antipo-

dal labeling f is max{f(u) − f(v) : u, v ∈ V (G)}. The
antipodal number for G, denoted by an(G), is the mini-

mum span of an antipodal labeling for G. Let Cn denote
the cycle on n vertices. Chartrand et al. [4] determined

the value of an(Cn) for n ≡ 2 (mod 4). In this article we
obtain the value of an(Cn) for n ≡ 1 (mod 4), confirming
a conjecture in [4]. Moreover, we settle the case n ≡ 3

(mod 4), and improve the known lower bound and give
an upper bound for the case n ≡ 0 (mod 4).
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1 Introduction

Radio k-labeling was motivated by the frequency assignment
problem (cf. [7]). Let k be a positive integer. A radio k-labeling
(or k-labeling for short) for a graph G is a function, f : V (G) →
{0, 1, 2, · · ·}, such that the following is satisfied for any vertices
u and v:

|f(u) − f(v)| ≥ k + 1 − d(u, v).

where d(u, v) denotes the distance between u and v. The span
of such a function f , denoted by sp(f), is defined as sp(f) =
max{f(u) − f(v) : u, v ∈ V (G)}. The minimum span over all
k-labelings of a graph G is called the Φk-number and denoted
by Φk(G).

For the special case that k = 1, the 1-labeling is indeed
the conventional vertex coloring and we have Φ1(G) = χ(G)−1,
where χ(G) is the chromatic number of G. Another special case
is when k = 2, the 2-labeling is the same as the distance two
labeling (or L(2, 1)-labeling) which has been studied extensively
in the past years (cf. [1, 2, 3, 9, 10, 11, 12, 14]). The Φ2-number
is known as the λ-number of G.

The radio k-labeling for large values of k has also been in-
vestigated by several authors. Let G be a connected graph. The
maximum distance among all pairs of vertices in G is the diame-
ter of G, denoted by diam(G). The radio labeling (or multi-level
distance labeling) is a radio k-labeling when k = diam(G). The
Φdiam(G)-number of G is called the radio number of G, denoted
by rn(G). The radio number for different families of graphs has
been investigated in [6, 8, 15, 16, 17, 18, 19]. For instance, the
radio number for paths and cycles has been studied in [6, 8, 19]
and was recently settled in [18].

When k = diam(G)− 1, a k-labeling is called an antipodal
labeling. That is, an antipodal labeling (or radio antipodal color-
ing) for G is a function, f : V (G) → {0, 1, 2, · · ·}, such that the
following is satisfied for any two vertices u and v:

|f(u) − f(v)| ≥ diam(G) − d(u, v).

The antipodal number for G, denoted by an(G), is the minimum
span of an antipodal labeling admitted by G. Notice that a radio
labeling is a one-to-one function, while in an antipodal labeling,
two vertices of distance diam(G) apart may receive the same
label (this is where the name “antipodal” came from).
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The antipodal labeling for graphs was first studied by
Chartrand et al. [4, 5], in which, among other results, gen-
eral bounds of an(G) were obtained. Khennoufa and Togni [13]
determined the exact value of an(Pn) for paths Pn. The an-
tipodal labeling for cycles Cn was studied in [4], in which lower
bounds for an(Cn) were shown. In addition, the bound for the
case n ≡ 2 (mod 4) was proved to be the exact value of an(Cn),
and the bound for the case n ≡ 1 (mod 4) was conjectured to
be the exact value as well [4].

In this article, we confirm the conjecture mentioned above.
Moreover, we determine the value of an(Cn) for the case n ≡ 3
(mod 4). For the case n ≡ 0 (mod 4), we improve the known
lower bound [4] and give an upper bound. It is conjectured that
the upper bound is the exact value.

2 Lower Bounds

In this section, we establish lower bounds for an(Cn). These
bounds were proved by Chartrand et al [4]. We present here
a different proof which includes techniques that will be used in
later sections.

In an antipodal labeling, the number assigned to a vertex
is called a label. Notice that as we are seeking for the mini-
mum span of an antipodal labeling, without loss of generality
we assume that the label 0 is used by any antipodal labeling.
Consequently, the span of f is the maximum label used.

In the following we introduce notations to be used through-
out this article. Denote V (Cn) = {v0, v1, · · · , vn−1}, vivi+1 ∈
E(Cn) for 0 ≤ i ≤ n − 2, and vn−1v0 ∈ E(Cn). The diameter of
Cn is denoted by d, where d = bn/2c. Every antipodal labeling
f for Cn gives an ordering (which may not be unique) of the
vertices according to the labels assigned . Denote the ordering
by (x0, x1, · · · , xn−1), where {x0, x1, · · · , xn−1} = V (Cn) and

0 = f(x0) ≤ f(x1) ≤ f(x2) ≤ · · · ≤ f(xn−1).

Note, the span of f is f(xn−1).
For i = 0, 1, · · · , n−2, we define the distance gap and label

gap, respectively, by:

di = d(xi, xi+1), fi = f(xi+1) − f(xi).
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By definition, it holds that fi ≥ d − di.

Proposition 1 For any three vertices u, v and w on a cycle
Cn,

d(u, v) + d(v, w) + d(u, w) ≤ n.

Proof. Without loss of generality, assume d(u, v), d(v, w) ≤
d(u, w). If all the three vertices lie on one half of the cycle, then
d(u, v) + d(v, w) + d(u, w) = 2d(u, w) ≤ n. Otherwise, we have
d(u, v) + d(v, w) + d(u, w) = n. 2

Lemma 2 Let f be an antipodal labeling for Cn, n ≥ 3, with
labels f(x0) ≤ f(x1) ≤ · · · ≤ f(xn−1). Let n = 4k + r for some
0 ≤ r ≤ 3. Then for any 0 ≤ i ≤ n − 3,

f(xi+2) − f(xi) = fi + fi+1 ≥

{

k, if r = 0, 1, 3;
k + 1, if r = 2.

Proof. By definition, we have f(xi+1)−f(xi) ≥ d−d(xi+1, xi),
f(xi+2) − f(xi+1) ≥ d − d(xi+2, xi+1), and f(xi+2) − f(xi) ≥
d − d(xi+2, xi). Summing up these three in-equalities and by
Proposition 1, we get

2(f(xi+2) − f(xi)) ≥ 3d − (d(xi, xi+1) + d(xi+1, xi+2)
+d(xi, xi+2))

≥ 3d − n.

Therefore, fi +fi+1 = f(xi+2)−f(xi) ≥ d(3d−n)/2e. The
results then follow by immediate calculations for different values
of n. 2

Corollary 3 [4] Let n = 4k + r for some n ≥ 3 and 0 ≤ r ≤ 3.
Then

an(Cn) ≥



















k(2k − 1), if r = 0;
2k2, if r = 1;
2k(k + 1), if r = 2;
k(2k + 1), if r = 3.
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Proof. Let f be an antipodal labeling for Cn. The span of f is

f(xn−1) = f0 + f1 + · · · + fn−2.

By Lemma 2, the results follow by pairing up the terms in the
above summation and leaving the last term fn−2 (if n is even)
which is at least 0. 2

In [4], it was proved that the equality in Corollary 3 holds
for the case n ≡ 2 (mod 4), and conjectured that the equal-
ity also holds for the case n ≡ 1 (mod 4). This conjecture is
confirmed in the next section.

3 n = 4k + 1

Let f be an antipodal labeling for a cycle Cn with 0 = f(x0) ≤
f(x1) ≤ · · · ≤ f(xn−1). In the rest of this article, we denote the
permutation π on {0, 1, 2, · · · , n − 1} generated from f with

xi = vπ(i).

For an integer x and a positive integer y, we denote “x mod y”
as a binary operation which outputs an integer z with z ≡ x
(mod y) and 0 ≤ z ≤ y − 1.

In this section, we prove the following result:

Theorem 4 If n = 4k + 1 for some integer k ≥ 1, then

an(Cn) = 2k2.

Proof. By Corollary 3, it suffices to find an antipodal la-
beling with span 2k2. Two cases are considered. Recall d =
diam(C4k+1) = 2k.

Case 1. k is odd First, we label the 2k + 1 vertices x0, x2,
· · ·, x4k by

π(2i) = ki mod n, and f(x2i) = ki, for i = 0, 1, 2, · · · , 2k.

For instance, π(2) = k (i.e., x2 = vk) and f(x2) = k; and
π(4k) = 2k − k−1

2
and f(x4k) = 2k2.

Secondly, we label the remaining vertices x1, x3, · · · , x4k−1

by π(1) = π(4k)+ k = 3k− k−1
2

; and π(2i +1) = (π(2i− 1)+ k)
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mod n, for i = 1, 2, · · · , 2k − 1, with labels f(x2i+1) = (k −
1)/2 + ki for i = 0, 1, · · · , 2k − 1. See Figure 1 for an example.
In Figure 1 (and all other figures), the number inside the circle
for each vertex is the label assigned to that vertex.
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16 4 12 0 7 15 3

v9
(x6)

v8
(x1)

v7
(x9)

v6
(x4) (x12) (x7)

v5 v4

v10
(x3)(x11)
v11 v12

(x0)(x8)
v0 v1

(x10)
v3

(x5)
v2

(x2)

Figure 1: An antipodal labeling for C13 with minimum span
an(C13) = 18.

To see that π is a permutation of {0, 1, · · · , n− 1}, we ob-
serve that π(0), π(2), · · · , π(4k), π(1), π(3), · · · , π(4k − 1) is a
list of vertices winding around Cn by jumping k vertices between
any two consecutive terms. Since gcd(n, k) = 1, so π is a per-
mutation of {0, 1, · · · , n − 1}. In addition, one can easily check
that for every i the following hold:

f(xi+1) − f(xi) ≥ d − d(xi+1, xi),

f(xi+2) − f(xi) = k = 2k − k = d − d(xi+2, xi),

f(xi+s) − f(xi) ≥ 2k ≥ d − d(xi+s, xi), for s ≥ 4.

Hence, to show that f is an antipodal labeling, it suffices to
verify f(xi+3) − f(xi) ≥ 2k − d(xi+3, xi). This is true since
d(xi+3, xi) = (k +1)/2, and f(xi+3)− f(xi) ∈ {(3k− 1)/2, (3k +
1)/2}.

Case 2. k is even Similar to Case 1, we first label the 2k+1
vertices x0, x2, · · ·, x4k, by π(2i) = ki mod n, for i = 0, 1, · · · , 2k,
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using labels f(x2i) = ki. Note that since 2k2 ≡ n − k
2

(mod n),
we have x4k = vn−(k/2).

Secondly, we label the remaining vertices by π(1) = 2k+1,
f(x1) = 0, and

π(2i + 1) =

{

(π(2i− 1) + k) mod n, if i is odd;
(π(2i− 1) + k + 1) mod n, if i is even,

with labels

f(x2i+1) =

{

f(x2i−1) + k, if i is odd;
f(x2i−1) + k + 1, if i is even.

See Figure 2 for an example.
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Figure 2: An antipodal labeling for C9 with minimum span
an(C9) = 8.

By calculation, π(1) = 2k + 1 ≡ −2k (mod n), and for
1 ≤ i ≤ 2k − 1,

π(2i + 1) ≡

{

−ik (mod n), if i is odd;
−(i + 2)k (mod n), if i is even.

Since π(2i) = ki mod n, for 0 ≤ i ≤ 2k, we conclude

{π(i) : 0 ≤ i ≤ 4k} = {jk mod n : −2k ≤ j ≤ 2k}.

Since gcd(n, k) = 1, π is a permutation. Similar to Case 1, it is
straightforward to check that f is an antipodal labeling, and we
shall leave the details to the reader. 2
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4 n = 4k + 3

As it turned out (Theorem 5), the exact value of an(C4k+3) is
greater than the lower bound established in Corollary 3.

Theorem 5 For every integer k ≥ 0, an(C4k+3) = 2k2 + 2k.

Note, when k = 0 in Theorem 5, it is trivial that an(C3) =
0. The following lemma will be used to prove Theorem 5 for
k ≥ 1.

Lemma 6 Let f be an antipodal labeling for Cn where n = 4k+
3, k ≥ 1. If fi + fi+1 = k for some 0 ≤ i ≤ n − 3, then the
following hold:

(1) d(xi, xi+2) = k + 1,

(2) fi = t, di+1 = k + t + 1, and di = 2k − t + 1, for some
t ∈ {0, 1, · · · , k}.

Proof. Recall d = diam(C4k+3) = 2k+1. Assume fi +fi+1 = k
for some i. By definition,

d(xi, xi+2) ≥ d − (f(xi+2) − f(xi)) = d − (fi+1 + fi)
= (2k + 1) − k = k + 1.

On the other hand, by Proposition 1 and definition, we have

d(xi, xi+2) ≤ (4k + 3) − (di + di+1)
≤ (4k + 3) − (d − fi + d − fi+1)
= (4k + 3) − (4k + 2 − k)
= k + 1.

This verifies (1).
Let fi = t for some t ∈ {0, 1, · · · , k}. By (1), the second

equality in the above holds, which implies that di = d − fi and
di+1 = d − fi+1. Therefore, (2) follows as d = 2k + 1. 2

Lemma 7 Let f be an antipodal labeling for Cn where n = 4k+3
for some integer k ≥ 1. Then for any 0 ≤ i ≤ n − 5,

fi + fi+1 + fi+2 + fi+3 ≥ 2k + 1.
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Proof. Assume to the contrary that for some i, fi + fi+1 +
fi+2 + fi+3 ≤ 2k. By Lemma 2, fi + fi+1 = fi+2 + fi+3 = k.
By symmetry and by Lemma 6 (1), without loss of generality,
assume xi = v0, xi+2 = vk+1 and xi+4 = v2(k+1). By Lemma 6
(2), fi = t for some 0 ≤ t ≤ k and di = 2k − t + 1. Note, xi+1 6=
v2k−t+1, for otherwise it would be di+1 = d(xi+1, xi+2) = k − t, a
contradiction. Hence, we conclude xi+1 = vn−(2k−t+1) = v2k+t+2.
This implies d(xi+4, xi) = t. Because f is an antipodal labeling,
we have

2k − t = fi+1 + fi+2 + fi+3 = f(xi+4) − f(xi+1)
≥ 2k + 1 − d(xi+4, xi+1)
= 2k + 1 − t,

a contradiction. 2

Theorem 8 For every integer k ≥ 1, an(C4k+3) ≥ 2k2 + 2k.

Proof. By Lemmas 2 and 7, the span of an antipodal labeling
f for C4k+3 has

f0 + f1 + · · · + f4k+1

=
k−1
∑

i=0
(f4i + f4i+1 + f4i+2 + f4i+3) + f4k + f4k+1

≥ k(2k + 1) + k = 2k2 + 2k.

2

Proof of Theorem 5. For k = 0, an(C3) = 0 is trivial as
mentioned earlier. For k ≥ 1, it remains to find an antipodal
labeling for C4k+3 with span equal to the desired number. First,
we label the vertices x0, x2, · · ·, x4k+2, by π(0) = 0 and f(x0) =
0; and for 1 ≤ i ≤ 2k + 1,

π(2i) =

{

(π(2i − 2) + k + 1) mod n, if i is odd;
(π(2i − 2) + k) mod n, if i is even,

f(x2i) =

{

f(x2i−2) + k, if i is odd;
f(x2i−2) + k + 1, if i is even.

Secondly, we label the remaining vertices by π(1) = 2k +2
and f(x1) = 0; and for 1 ≤ i ≤ 2k,

π(2i + 1) = (π(2i− 1) + k + 1) mod n, and f(x2i+1) = i(k + 1).

9



��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
��

A
AA

7 12 0 5 9 2

3 10 0 6 12

(x6)
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Figure 3: An antipodal labeling for C11 with minimum span
an(C11) = 12.

See Figure 3 for an example.

By some calculation, one gets

π(2i + 1) ≡ (i + 2)(k + 1) (mod n), for 0 ≤ i ≤ 2k, and

π(2i) ≡

{

−(i − 2)(k + 1) (mod n), if i is odd;
−i(k + 1) (mod n), if i is even,

for 0 ≤ i ≤ 2k + 1. Hence, we conclude

{π(i) : 0 ≤ i ≤ 4k + 2} = {j(k + 1) mod n : −2k ≤ j ≤ 2k + 2}.

Because gcd(n, k + 1) = 1, π is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 5. 2

5 n = 4k

Note, it is trivial that an(C4) = 1. For cycles with n = 4k nodes,
k ≥ 2, we improve the lower bound in Corollary 3 and give an
upper bound.
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Theorem 9 For every integer k ≥ 2,

2k2 − bk/2c ≤ an(C4k) ≤ 2k2 − 1.

The following lemma will be used to prove the lower bound
for an(C4k) in Theorem 9. Recall that d = diam(C4k) = 2k.

Lemma 10 Let f be an antipodal labeling of C4k, for some in-
teger k ≥ 2. If fi + fi+1 = k for some 0 ≤ i ≤ n − 3, then
d(xi, xi+2) = k.

Proof. Assume fi + fi+1 = k for some 0 ≤ i ≤ n − 3. Then
d(xi, xi+2) ≥ d − (fi + fi+1) = k. On the other hand, by Propo-
sition 1 and definition,

d(xi, xi+2) ≤ n − (di + di+1)
≤ 4k − (d − fi + d − fi+1)
= k.

2

Lemma 11 Let f be an antipodal labeling of C4k, k ≥ 2. Then
for any 0 ≤ i ≤ n − 9,

7
∑

j=0

fi+j ≥ 4k + 1.

Proof. Assume to the contrary, for some 0 ≤ i ≤ n − 9, we

have
7
∑

j=0
fi+j ≤ 4k. By Lemma 2, fi + fi+1 = fi+2 + fi+3 =

fi+4 + fi+5 = fi+6 + fi+7 = k. By Lemma 10, d(xi, xi+2) =
d(xi+2, xi+4) = d(xi+4, xi+6) = d(xi+6, xi+8) = k. Since n = 4k,
it is impossible that all these four equations hold. So the result
follows. 2

Lemma 12 Let f be an antipodal labeling of C4k, k ≥ 2. The
following are true.

(1) If fi + fi+1 = k for some 0 ≤ i ≤ n − 4, then fi+2 ≥ fi.

(2) If fi + fi+1 = k for some 1 ≤ i ≤ n − 3, then fi−1 ≥ fi+1.
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(3) If fi +fi+1 +fi+2 +fi+3 = 2k for some 0 ≤ i ≤ n−6, then
fi+4 ≥ fi ≥ 1.

(4) If
7
∑

j=0
fi+j = 4k+1 for some 0 ≤ i ≤ n−10, then fi+8 ≥ fi.

(5) If
7
∑

j=0
fi+j = 4k+1 for some 0 ≤ i ≤ n−10, then fi+8 ≥ 1.

(6) For any 0 ≤ i ≤ n − 6,
4
∑

j=0
fi+j ≥ 2k + 1.

(7) For any 0 ≤ i ≤ n − 10,
8
∑

j=0
fi+j ≥ 4k + 2.

Proof. To prove (1), assume fi+fi+1 = k for some 0 ≤ i ≤ n−4.
By Lemma 2, fi+2 + fi+1 ≥ k = fi+1 + fi, hence fi+2 ≥ fi. (2)
follows by a similar argument.

To prove (3), assume fi + fi+1 + fi+2 + fi+3 = 2k for some
0 ≤ i ≤ n−6. Then by Lemma 2, fi+fi+1 = fi+2+fi+3 = k. By
Lemma 10, d(xi, xi+2) = d(xi+2, xi+4) = k, so d(xi, xi+4) = 2k.
This implies that di < 2k, as n = 4k. By definition of antipodal
labeling, fi ≥ 1. Hence, by (1), we have fi+4 ≥ fi+2 ≥ fi ≥ 1.

To prove (4), assume
7
∑

j=0
fi+j = 4k + 1 for some 0 ≤ i ≤

n − 10. By Lemma 11,
8
∑

j=1
fi+j ≥ 4k + 1 =

7
∑

j=0
fi+j, hence

fi+8 ≥ fi.

To prove (5), assume
7
∑

j=0
fi+j = 4k + 1 for some 0 ≤ i ≤

n − 10. By Lemma 2, we have fi + fi+1 = fi+2 + fi+3 = k or
fi+4 + fi+5 = fi+6 + fi+7 = k. For the former case, the result
follows by (4) and (3); for the latter case, the results follows by
(3).

(6) follows by (3) and Lemma 2; and (7) follows by (5) and
Lemma 11. 2

Corollary 13 For any integer k ≥ 2, an(C4k) ≥ 2k2 − bk/2c.
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Proof. For k = 2, by Lemma 2 and Lemma 12 (6), the span of
an antipodal labeling f for C8 has f(x7) = (f0 + f1 + · · ·+ f4)+
(f5 + f6) ≥ 5 + 2 = 2k2 − bk/2c.

For k ≥ 3, by Lemmas 2, 11 and 12 (7), the span of an
antipodal labeling f for C4k has

f(x4k−1) =
8
∑

i=0
fi +

b(4k−9)/8c
∑

i=1

(

8
∑

j=1
(f8i+j)

)

+f8b(4k−1)/8c+1 + f8b(4k−1)/8c+2 + · · · + f4k−2

≥

{

(4k + 2) + [2k2 − (11/2)k − 3/2] + k, k is odd
(4k + 2) + [2k2 − (15/2)k − 2] + 3k, k is even

= 2k2 − bk/2c.

2

Proof of Theorem 9. It remains to find an antipodal labeling
for C4k with span 2k2 − 1. First, we label the vertices x0, x2,
· · ·, x4k−2, by π(0) = 0 and f(x0) = 0; and for 1 ≤ i ≤ 2k − 1,

π(2i) =

{

(π(2i − 2) + k) mod n, if i is odd;
(π(2i − 2) + k + 1) mod n, if i is even,

f(x2i) =

{

f(x2i−2) + k, if i is odd;
f(x2i−2) + k + 1, if i is even.

Secondly, we label the remaining vertices by: For 0 ≤ i ≤
2k − 1,

π(2i + 1) = (π(2i) + 2k) mod n, and f(x2i+1) = f(x2i).

See Figure 4 for an example.
By calculation, one gets the following for 0 ≤ i ≤ k − 1:

π(4i) ≡ i(2k + 1) (mod n).
π(4i + 1) ≡ (i + 2k)(2k + 1) (mod n).

π(4i + 2) ≡

{

(i + 3k)(2k + 1) (mod n), if k is odd;
(i + k)(2k + 1) (mod n), if k is even.

π(4i + 3) ≡

{

(i + k)(2k + 1) (mod n), if k is odd;
(i + 3k)(2k + 1) (mod n), if k is even.

13
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Figure 4: An antipodal labeling for C12 with minimum span
an(C12) = 17.

Therefore, we conclude

{π(i) : 0 ≤ i ≤ 4k − 1} = {j(2k + 1) mod n : 0 ≤ j ≤ 4k − 1}.

Because gcd(n, 2k + 1) = 1, π is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 9. 2

We conjecture that an(C4k) is equal to the upper bound in
Theorem 9.

Conjecture 1 For any k ≥ 1, an(C4k) = 2k2 − 1.

A case analysis has confirmed the above conjecture for k ≤ 5.
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