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Abstract

Let G be a graph with diameter d. An antipodal la-
beling of G is a function f that assigns to each vertex a
non-negative integer (label) such that for any two ver-
tices u and v, |f(u) — f(v)| > d — d(u,v), where d(u,v)
is the distance between u and v. The span of an antipo-
dal labeling f is max{f(u) — f(v) : u,v € V(G)}. The
antipodal number for G, denoted by an(G), is the mini-
mum span of an antipodal labeling for G. Let C,, denote
the cycle on n vertices. Chartrand et al. [4] determined
the value of an(C),) for n = 2 (mod 4). In this article we
obtain the value of an(C,,) for n = 1 (mod 4), confirming
a conjecture in [4]. Moreover, we settle the case n = 3
(mod 4), and improve the known lower bound and give
an upper bound for the case n =0 (mod 4).
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1 Introduction

Radio k-labeling was motivated by the frequency assignment
problem (cf. [7]). Let k be a positive integer. A radio k-labeling
(or k-labeling for short) for a graph G is a function, f : V(G) —
{0,1,2,---}, such that the following is satisfied for any vertices

u and v:
|f(u) — f(v)] > k+1—d(u,v).

where d(u,v) denotes the distance between u and v. The span
of such a function f, denoted by sp(f), is defined as sp(f) =
max{f(u) — f(v) : u,v € V(G)}. The minimum span over all
k-labelings of a graph G is called the ®;-number and denoted

For the special case that £ = 1, the 1-labeling is indeed
the conventional vertex coloring and we have ®;(G) = x(G) — 1,
where x(G) is the chromatic number of G. Another special case
is when k = 2, the 2-labeling is the same as the distance two
labeling (or L(2,1)-labeling) which has been studied extensively
in the past years (cf. [1, 2, 3, 9, 10, 11, 12, 14]). The ®3-number
is known as the A-number of G.

The radio k-labeling for large values of k£ has also been in-

vestigated by several authors. Let G be a connected graph. The
maximum distance among all pairs of vertices in G is the diame-
ter of G, denoted by diam(G). The radio labeling (or multi-level
distance labeling) is a radio k-labeling when k = diam(G). The
D giam(e)-number of G is called the radio number of G, denoted
by rm(G). The radio number for different families of graphs has
been investigated in [6, 8, 15, 16, 17, 18, 19]. For instance, the
radio number for paths and cycles has been studied in [6, 8, 19]
and was recently settled in [18].

When k = diam(G) — 1, a k-labeling is called an antipodal
labeling. That is, an antipodal labeling (or radio antipodal color-
ing) for G is a function, f: V(G) — {0,1,2,---}, such that the
following is satisfied for any two vertices u and v:

|[f(u) = f(v)| = diam(G) — d(u, v).

The antipodal number for G, denoted by an(G), is the minimum
span of an antipodal labeling admitted by G. Notice that a radio
labeling is a one-to-one function, while in an antipodal labeling,
two vertices of distance diam((G) apart may receive the same
label (this is where the name “antipodal” came from).
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The antipodal labeling for graphs was first studied by
Chartrand et al. [4, 5], in which, among other results, gen-
eral bounds of an(G) were obtained. Khennoufa and Togni [13]
determined the exact value of an(P,) for paths P,. The an-
tipodal labeling for cycles C, was studied in [4], in which lower
bounds for an(C,,) were shown. In addition, the bound for the
case n = 2 (mod 4) was proved to be the exact value of an(C,),
and the bound for the case n = 1 (mod 4) was conjectured to
be the exact value as well [4].

In this article, we confirm the conjecture mentioned above.
Moreover, we determine the value of an(C,,) for the case n = 3
(mod 4). For the case n = 0 (mod 4), we improve the known
lower bound [4] and give an upper bound. It is conjectured that
the upper bound is the exact value.

2 Lower Bounds

In this section, we establish lower bounds for an(C,). These
bounds were proved by Chartrand et al [4]. We present here
a different proof which includes techniques that will be used in

later sections. ' '
In an antipodal labeling, the number assigned to a vertex

is called a label. Notice that as we are seeking for the mini-
mum span of an antipodal labeling, without loss of generality
we assume that the label 0 is used by any antipodal labeling.
Consequently, the span of f is the maximum label used.

In the following we introduce notations to be used through-
out this article. Denote V(C,) = {vo,v1,*,Un_1}, Vi1 €
E(C,) for 0 <i<n—2,and v,_jvg € E(C,,). The diameter of
C,, is denoted by d, where d = |n/2|. Every antipodal labeling
f for C,, gives an ordering (which may not be unique) of the
vertices according to the labels assigned . Denote the ordering
by (zg,x1,*,Tn_1), where {zg, 1, -+, 21} = V(C,) and

0= f(zo) < flz1) < flz2) <+ < fln).
Note, the span of fis f(x,_1).
Fort=0,1,---,n—2, we define the distance gap and label
gap, respectively, by:
di = d(zi, iv1), fi = f(@ig) — f(20).
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By definition, it holds that f; > d — d;.

Proposition 1 For any three vertices u, v and w on a cycle

n;

d(u,v) + d(v,w) + d(u,w) < n.

Proof. Without loss of generality, assume d(u,v),d(v,w) <
d(u,w). If all the three vertices lie on one half of the cycle, then
d(u,v) + d(v,w) + d(u, w) = 2d(u, w) < n. Otherwise, we have
d(u,v) 4+ d(v,w) + d(u, w) = n. O

Lemma 2 Let f be an antipodal labeling for C,, n > 3, with
labels f(xo) < f(z1) < -+ < f(wp_1). Let n =4k + r for some
0<r<3. Then for any 0 <1 <n — 3,

f(@ive) = f(wi) = fi + fira 2 { :’—I- 1, ZZ: i g> L,3;

Proof. By definition, we have f(z;11)— f(z;) > d—d(zi11, T:),

[(@ir2) = f(@i01) = d — d(@i2, 2i41), and f(zi2) — f(z) >
d — d(xiy2, ;). Summing up these three in-equalities and by
Proposition 1, we get

2(f(@ire) — f(zi)) = 3d = (d(@i, wit1) + (i1, Tite)
+d(zi, 2i12))
> 3d —n.

Therefore, fi+ fis1 = f(xir2) — f(zi) > [(3d—n)/2]. The
results then follow by immediate calculations for different values
of n. O

Corollary 3 [4] Let n =4k +1r for somen >3 and 0 <r < 3.
Then

k(2k — 1), ifr =0;
2k2, ifr=1;

2k(k+1), ifr=2;
k(2k +1), ifr =3,

an(C,) >



Proof. Let f be an antipodal labeling for C),,. The span of f is

f@n1) = fo+ fi+-+ faa

By Lemma 2, the results follow by pairing up the terms in the
above summation and leaving the last term f,_o (if n is even)

which is at least 0. O
In [4], it was proved that the equality in Corollary 3 holds

for the case n = 2 (mod 4), and conjectured that the equal-
ity also holds for the case n = 1 (mod 4). This conjecture is
confirmed in the next section.

3 n=4k+1

Let f be an antipodal labeling for a cycle C,, with 0 = f(xz¢) <
f(z1) < -+ < f(xp_1). In the rest of this article, we denote the
permutation 7 on {0,1,2,---,n — 1} generated from f with

€Tr; = 'U7r(i)-

For an integer x and a positive integer y, we denote “xr mod y”
as a binary operation which outputs an integer z with z = x
(mod y) and 0 < z <y — 1.

In this section, we prove the following result:

Theorem 4 [fn =4k + 1 for some integer k > 1, then
an(C,,) = 2k?.

Proof. By Corollary 3, it suffices to find an antipodal la-

beling with span 2k%. Two cases are considered. Recall d =
diam(C’4k+1) = 2k.

|Case 1. k is odd| First, we label the 2k + 1 vertices zg, 2,
“e, Tag Dy

7(2i) = ki mod n, and f(xy;) = ki, fori=0,1,2,---,2k.

For instance, 7(2) = k (i.e., zo = v;) and f(z2) = k; and
m(4k) = 2k — 521 and f(2a) = 2k%
Secondly, we label the remaining vertices x1, x3, -, Tap_1

by m(1) = m(4k) + k = 3k — 551 and w(2i 4+ 1) = (7(2i — 1) + k)
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mod n, for 1 = 1,2,---,2k — 1, with labels f(z41) = (k —
1)/2 4+ ki for i = 0,1,---,2k — 1. See Figure 1 for an example.
In Figure 1 (and all other figures), the number inside the circle
for each vertex is the label assigned to that vertex.

(%) % U7 Ve Us V4
(z6) (1) (z9) (z4) (712 x7

Figure 1: An antipodal labeling for ('3 with minimum span
an(Clg) = 18.

To see that 7 is a permutation of {0,1,---,n — 1}, we ob-
serve that m(0),7(2), ---,w(4k), 7(1),7(3), ---,m(dk — 1) is a
list of vertices winding around C,, by jumping k vertices between
any two consecutive terms. Since ged(n, k) = 1, so 7 is a per-
mutation of {0,1,---,n — 1}. In addition, one can easily check
that for every ¢ the following hold:

f(@ig1) — f(zi) > d — d(@ig1, 73),
f(@ive) = f(zi) =k =2k — k = d — d(zis2, 7:),
f(l’H_S) - f(l’z) Z 2k Z d— d(l’i+s,l’i), for s Z 4.

Hence, to show that f is an antipodal labeling, it suffices to
verify f(x;y3) — f(z;) > 2k — d(zi43, ;). This is true since
d(wi3, i) = (k+1)/2, and f(2i43) — f(2:) € {(3k —1)/2, (3k +
1)/2}.

|Case 2. k is even| Similar to Case 1, we first label the 2k +1
vertices xg, Ta, -+, Tag, by m(2i) = ki mod n, fori =0,1,---, 2k,




using labels f(x2;) = ki. Note that since 2k = n — £ (mod n),
we have T4, = vy—(x/2)-
Secondly, we label the remaining vertices by 7 (1) = 2k+1,
f(z1) = 0, and
: (w20 = 1)+ k) mod n, if i is odd;
m(2i+1) = { (m(2t — 1)+ k+1) mod n, ifiis even,
with labels
f( ' ) . f(l’gi_l) + ]{5, if ¢ is Odd,
Tait1) = f(xoi1) + k+ 1, if i is even.

See Figure 2 for an example.

AN NG
Vg Vs V4 V3
(wg)  (z1)  (24)  (7)

Figure 2: An antipodal labeling for Cy with minimum span
an(Cy) = 8.

By calculation, 7(1) = 2k + 1 = —2k (mod n), and for
1<1<2k—-1,
)= T o (mod ), i o
Since w(2i) = ki mod n, for 0 <1i < 2k, we conclude
{m(i): 0 <1 <4k} ={jk mod n: -2k < j < 2k}.
Since ged(n, k) = 1, w is a permutation. Similar to Case 1, it is

straightforward to check that f is an antipodal labeling, and we
shall leave the details to the reader. O



4 n=4k + 3

As it turned out (Theorem 5), the exact value of an(Clyii3) is
greater than the lower bound established in Corollary 3.

Theorem 5 For every integer k > 0, an(Cyy3) = 2k* + 2k.

Note, when & = 0 in Theorem 5, it is trivial that an(C3) =
0. The following lemma will be used to prove Theorem 5 for
kE>1.

Lemma 6 Let f be an antipodal labeling for C,, where n = 4k+
3, k>1. If fy + fix1 = k for some 0 < i < n — 3, then the
following hold:

(1) d(l’i,l’H_Q) = k‘ + 1,

(2) fi=t, diys =k+t+1, and d; = 2k —t + 1, for some
te{0,1,--- k}.

Proof. Recall d = diam(Clypy3) = 2k+1. Assume f;+ fiy1 =k
for some ¢. By definition,

d(ri, vi2) > d — (f(wiz2) — f(2:)) = d— (fisa + fi)
= (2k+1)—k=Fk+1

On the other hand, by Proposition 1 and definition, we have

(4/{5—|—3) — (di‘l‘di—l—l)
(4k+3) — (d— fi+d— fit1)
(4k+3) — (4k+2— k)
k+ 1.

d(f% Ii+2)

I IAIA

This verifies (1).
Let f; =t for some t € {0,1,---,k}. By (1), the second

equality in the above holds, which implies that d; = d — f; and
diy1 = d — fir1. Therefore, (2) follows as d = 2k + 1. O

Lemma 7 Let f be an antipodal labeling for C,, where n = 4k+3
for some integer k > 1. Then for any 0 < i <n —5,

fi+ fix1 + fiva + fixs > 2k + 1.



Proof. Assume to the contrary that for some i, f; + fi11 +
fir2 + firs < 2k. By Lemma 2, fi + fiy1 = fixo + fivs = k
By symmetry and by Lemma 6 (1), without loss of generality,
assume r; = Vg, Tj+2 = Vg+1 and LTita = V2(k+1)- By Lemma 6
(2), fi =t for some 0 <t < k and d; = 2k —t+ 1. Note, x;41 #
Vog—t+1, for otherwise it would be d; 1 = d(zi11, Ti12) =k —t, a
contradiction. Hence, we conclude ;1 = Vp_(2k—t41) = Vok+i+2-
This implies d(x;4+4, x;) = t. Because f is an antipodal labeling,
we have

2k —t = fiq1 + fira + fiss f(@iva) — f(@it1)
2k +1—- d(l’i+4, ZL’Z’+1)

2k+1—1t,

[IAVARI

a contradiction. O
Theorem 8 For every integer k > 1, an(Cypy3) > 2k* + 2k.

Proof. By Lemmas 2 and 7, the span of an antipodal labeling
f for C4k+3 has

fo+ fi -+ fan
k-1
= > (fau+ faivr + faive + fairs) + far + faen

=0
> k(2k+1)+k = 2k* + 2k.
O

Proof of Theorem 5. For k = 0, an(C3) = 0 is trivial as
mentioned earlier. For £ > 1, it remains to find an antipodal
labeling for Cy;3 with span equal to the desired number. First,
we label the vertices xg, xa, - -+, Tags2, by 7(0) = 0 and f(xg) =
0; and for 1 <7 <2k + 1,

(20) = (7(2i —2)+ k+1) mod n, ifiisodd;
] (7(20 —-2)+ k) mod n, if 7 is even,
F(a1) = f(zoi_o) + K, if 7 is odd;

T2) = f(xoi2) + k+1, if ¢ is even.

Secondly, we label the remaining vertices by 7(1) = 2k 42
and f(x;) = 0; and for 1 <14 < 2k,

m(2i+1)=(m(20 — 1)+ k+1) mod n, and f(xo41) =i(k+1).
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Figure 3: An antipodal labeling for C; with minimum span
an(C'n) = 12.

See Figure 3 for an example.

By some calculation, one gets
m(2i+1)=(i+2)(k+ 1) (mod n), for 0 <i< 2k, and
~_ | —(—=2)(k+1) (modn), ifiis odd;
m(2i) = { —i(k+1) (mod n), if i is even,
for 0 <i <2k + 1. Hence, we conclude
{m(i):0<i<4k+2} ={j(k+1) mod n: -2k < j <2k+2}.

Because ged(n, k + 1) = 1, 7 is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 5. O

5 n =4k
Note, it is trivial that an(Cy) = 1. For cycles with n = 4k nodes,

k > 2, we improve the lower bound in Corollary 3 and give an
upper bound.
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Theorem 9 For every integer k > 2,
2k? — |k/2] <an(Cy) < 2k? — 1.

The following lemma will be used to prove the lower bound
for an(Cyy) in Theorem 9. Recall that d = diam(Cy) = 2k.

Lemma 10 Let f be an antipodal labeling of Cyy, for some in-
teger k > 2. If fi + fixn = k for some 0 < i@ < n — 3, then
d(l’i,l’H_Q) = k.

Proof. Assume f; + fi.1 = k for some 0 < i < n — 3. Then
d(x;, xi1e) > d— (fi + fix1) = k. On the other hand, by Propo-
sition 1 and definition,

n— (d; + dit1)
4k — (d— fi +d — fis1)
k.

d(xi, Tit2)

A IA

O

Lemma 11 Let f be an antipodal labeling of Cyy, k > 2. Then
forany 0 <i<n-09,

7
> fiyg >4k + 1.
j=0

Proof. Assume to the contrary, for some 0 < i < n — 9, we
7

have > fiy; < 4k. By Lemma 2, fi + fiy1 = fire + firs =
=0

fiva + firs = fiye + fixr = k. By Lemma 10, d(z;, zi42) =
d(fl?i+2,55i+4) = d(Ii+4,CEi+6) = d(Ii+6,Ii+8) = k. Since n = 4k,
it is impossible that all these four equations hold. So the result
follows. o

Lemma 12 Let f be an antipodal labeling of Cy, k > 2. The
following are true.

(1) If fi + fix1 =k for some 0 < i <n—4, then firo > f;.
(2) If fi + fix1 =k for some 1 <i<mn—3, then fi_1 > fii1.
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(8) If fi+ fix1 =+ firo + firs = 2k for some 0 < i < n—6, then
Jiva> fi 21

7
(4) If 3> fix; = 4k+1 for some 0 < i < n—10, then fiis > fi.
5=0
7
(5) If 3> firj = 4k+1 for some 0 < i < n—10, then fiig > 1.
5=0
4
(6) For any 0 <i<n—6, Y fir; >2k+1.
5=0

8
(7) For any 0 <i<mn—10, Y fir; >4k +2.
7=0

Proof. To prove (1), assume f;+ f;11 = k for some 0 < i < n—4.
By Lemma 2, fiio + fiq1 > k = fiqz1 + fi, hence fizo > fi. (2)
follows by a similar argument.

To prove (3), assume f; + fir1 + firve + fiys = 2k for some
0 S 1 S n—6. Then by Lemma 2, fi‘l’fi—l—l = fi+2+.fi+3 = k. By
Lemma 10, d(z;, xi12) = d(Tite, Tiva) = k, so d(x;, vi14) = 2k.
This implies that d; < 2k, as n = 4k. By definition of antipodal
labeling, f; > 1. Hence, by (1), we have fi14 > fiyo > fi > 1.

7
To prove (4), assume Y. fiy; = 4k + 1 for some 0 < i <
7=0

8 7
n — 10. By Lemma 11, ) fi;; > 4k +1 = 3 fi+;, hence
j=1 i=0
firs > fi-
To prove (5), assume Z fi+; = 4k + 1 for some 0 < i <

n — 10. By Lemma 2, we have fi+ fix1 = fizo + fixg =k or
fixa + fixs = fize + fl+7 = k. For the former case, the result
follows by (4) and (3); for the latter case, the results follows by
(3).

(6) follows by (3) and Lemma 2; and (7) follows by (5) and
Lemma 11. O

Corollary 13 For any integer k > 2, an(Cyx) > 2k* — |k/2].
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Proof. For k = 2, by Lemma 2 and Lemma 12 (6), the span of
an antipodal labeling f for Cg has f(x7) = (fo+ fi+---+ fa) +
(fs + fo) > 5+ 2=2k*—|k/2].

For k > 3, by Lemmas 2, 11 and 12 (7), the span of an
antipodal labeling f for Cy; has

(4k=9)/8] [ 8
Z ( Z (.f8i+j)

8
fxaer) =X fi+
i=0 j=1
+f81(ak—1)/8)+1 + fs|(ak—1)/8)+2 + - + far—2

i=1

o[ Uk +2)+ [2k? — (11/2)k — 3/2] + k, k is odd
= | (4k +2) + [2k2 — (15/2)k — 2] + 3k, k is even

= 2k? — |k/2).

O
Proof of Theorem 9. It remains to find an antipodal labeling

for Cy, with span 2k* — 1. First, we label the vertices xg, xa,

e Xyp—9, by (0) = 0 and f(z9) = 0; and for 1 <i < 2k —1,
(2i) = (m(20 —2) + k) mod n, if 7 is odd;

e = (m(2t —2)+k+1) modn, ifiiseven,

Flag) = f(z2i—2) + k, if 7 is odd;
)= f(zoi—o) + k+1, ifiis even.

Secondly, we label the remaining vertices by: For 0 <1 <
2% — 1,

(20 + 1) = (w(2i) + 2k) mod n, and f(x2:41) = f(z2).

See Figure 4 for an example.
By calculation, one gets the following for 0 < i < k — 1:

m(41) = i(2k+1) (mod n)
m(di+1) = (i+2k)(2k+1) (mod n).
: _ (1 +3k)(2k + 1) (mod n), if k is odd;
T2 = (4 E)2k+1) (modn), if k is even.
: _ (t+k)(2k+1) (modmn), ifk is odd;
m(4i+3) = (14 3k)(2k+1) (mod n), if kis even.
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Vg V10 V11 Vo 1 V2
(3) ()  (711)  (20) (5) (s)
Vg V7 Vg Vs U4 U3
(9) (74) (1) (z10)  (27) (72)

Figure 4: An antipodal labeling for (5 with minimum span
an(Clg) =17.

Therefore, we conclude
{m(i):0<i<4k—1}={j(2k+1) mod n:0 < j <4k —1}.

Because ged(n, 2k + 1) = 1, m is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 9. O

We conjecture that an(Cy) is equal to the upper bound in
Theorem 9.

Conjecture 1 For any k > 1, an(Cy) = 2k* — 1.

A case analysis has confirmed the above conjecture for k£ < 5.
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