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Abstract

For graphs G and H, let G ⊕ H denote their Cartesian sum. This paper
investigates the chromatic number and the circular chromatic number for G⊕H.
It is proved that χ(G⊕H) ≤ max{dχc(G)χ(H)e, dχ(G)χc(H)e} holds for any
G and H; and χc(G ⊕ H) ≤ max{χ(H)χc(G), χ(G)χc(H)} holds for graphs
G and H with some special values of χc(G) and χc(H). These results improve
previously known bounds on the corresponding coloring parameters for the
Cartesian sum of graphs.
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1 Introduction

There are several interesting types of graph products for which various coloring prob-
lems have been studied extensively in the literature. For instance, in [10], the author
surveyed the study of the chromatic number for four kinds of graph product: Direct
product (also known as the categorical product), Cartesian product, lexicographic
product and strong product. Moreover, the circular chromatic number and the frac-
tional chromatic number for these graph products have also attracted considerable
attention [13, 17, 18, 19, 22, 24]. Many interesting results are known, and yet some
challenging problems remain open.

A typical problem on a product of graphs is to express (or find the best bound of) a
coloring parameter (such as the chromatic number or the circular chromatic number)
for the product of two graphs, say G and H, in terms of the coloring parameters of
G and H. For instance, the well-known Hedetniemi conjecture states: For any graph
G and H, χ(G × H) = min{χ(G), χ(H)}, where G × H is the direct product of G
and H. Although the conjecture was confirmed for the cases that χ(G) = χ(H) = 3
by Hedetniemi [7], and χ(G) = χ(H) = 4 by El-Zahar and Sauer [4], it remains open
for other cases.

In this article, we investigate the chromatic number and the circular chromatic
number for a type of graph products, namely, the Cartesian sum of graphs. Suppose
G = (V, E) and H = (V ′, E ′). The Cartesian sum of G and H, denoted by G ⊕ H,
has as the vertex set V × V ′, and the edge set

E(G ⊕ H) = {(x, x′)(y, y′) : xy ∈ E(G) or x′y′ ∈ E(H)}.

This notion of graph product was introduced by Ore [11] in 1962. The chromatic
number for the Cartesian sum of graphs has been investigated in [2, 3, 12, 20].

For any graphs G and H, it is easy to see that χ(G⊕H) ≤ χ(G)χ(H). The bound
is sharp, as χ(Kn ⊕Km) = nm. However, for many graphs, the value of χ(G⊕H) is
strictly less than χ(G)χ(H). Hence, one would aim at finding a better upper bound
for χ(G ⊕ H) by investigating further on the structures of G and H. To this end,
it is natural to consider the relations between χ(G ⊕ H) and the circular chromatic
numbers of G and H.

For a graph G, the circular chromatic number is a refinement of the chromatic
number. Let p, q be integers with p ≥ 2q > 0. A (p, q)-coloring of a graph G is a
mapping c : V (G) → {0, 1, · · · , p−1} such that for any edge uv of G, |c(u)−c(v)|p ≥ q,
where |x − y|n = min{|x − y|, n − |x − y|}. The circular chromatic number χc(G) of
G is defined as

χc(G) = inf{p/q : G admits a (p, q)-coloring}.
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It is known that for any graph G,

χ(G) − 1 < χc(G) ≤ χ(G).

The above is equivalent to χ(G) = dχc(G)e. Thus, the circular chromatic number for
a graph G contains more information on the structure of G than what the chromatic
number does.

Two questions about the Cartesian sum of graphs emerge naturally:

Question 1 What is the best upper bound for χ(G⊕H) in terms of χc(G) and χc(H)?

Question 2 What is the best upper bound for χc(G ⊕ H) in terms of χc(G) and

χc(H)?

As χ(G ⊕ H) = dχc(G ⊕ H)e, an answer to Question 2 provides an answer to
Question 1. On the other hand, an answer to Question 1 does not induce an answer
to Question 2. In this article, we answer Question 1 completely, and provide partial
solutions to Question 2.

A fractional coloring of a graph G is a mapping c from I(G), the set of all in-
dependent sets of G, to the interval [0, 1] of reals, such that

∑

x∈I∈I(G)
c(I) ≥ 1 holds

for any x ∈ V (G). The fractional chromatic number χf (G) of G is the infimum of
the value

∑

I∈I(G)
c(I) for a fractional coloring c of G (cf. [5, 8, 14, 15]). It is known

[1, 21, 24] that for any graph G, χf (G) ≤ χc(G).

For graphs G = (V, E) and H = (V ′, E ′), the lexicographic product of G and
H, denoted by G[H], has the vertex set V × V ′, in which (x, x′)(y, y′) is an edge if
[xy ∈ E] or [x = y and x′y′ ∈ E ′]. It was proved in [23] that the following holds for
any G and H:

χf (G)χ(H) ≤ χc(G[H]) ≤ χc(G)χ(H).

If it is the case that χf (G) = χc(G), then we have χc(G[H]) = χc(G)χ(H). The
graphs with χf(G) = χc(G) are called star-extremal. Many graphs are known to be
star-extremal [6, 9] (for instance, cycles). Hence, there exist graphs G and H with
χc(G[H]) = χc(G)χ(H). It is easy to see from the definition that G[H] is a spanning
subgraph of G ⊕ H. Therefore, if G is star-extremal, then

χc(G ⊕ H) ≥ χc(G)χ(H).
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Since the Cartesian sum is symmetric, i.e., G ⊕ H = H ⊕ G, we conclude that if G
and H are star-extremal, then

χc(G ⊕ H) ≥ max{χc(G)χ(H), χ(G)χc(H)}. (1.1)

Consequently, if G and H are star-extremal, then

χ(G ⊕ H) ≥ max{dχc(G)χ(H)e, dχ(G)χc(H)e}. (1.2)

In this article, we prove the following result, which answers Question 1.

Theorem 1 For any graphs G and H,

χ(G ⊕ H) ≤ max{dχc(G)χ(H)e, dχ(G)χc(H)e}.

Moreover, the equality holds if G and H are star-extremal.

For the circular chromatic number of G ⊕ H, we conjecture that χc(G ⊕ H) ≤
max{χc(G)χ(H), χ(G)χc(H)} holds for all graphs G and H. If the conjecture is
proved to be true, then in view of (1.1), this upper bound for χc(G ⊕ H) would be
sharp, answering Question 2. Although it is unknown whether the conjecture holds
in general, we shall prove the following result, which would give solutions to Question
2, for graphs G and H with some special values of χc(G) and χc(H).

Theorem 2 Let p, q, p′, q′ be positive integers with p = kq + r and p′ = k′q′ + r′,
where 0 ≤ r < q and 0 ≤ r′ < q′. Assume χc(G) = p/q and χc(H) = p′/q′. Then

χc(G ⊕ H) ≤
{

χc(G)χ(H), if p′(p + q − 1) ≤ p(p′ + q′ − r′);
χc(H)χ(G), if p(p′ + q′ − 1) ≤ p′(p + q − r).

Moreover, the equality holds if G and H are star-extremal.

Theorem 1 has an application. A useful tool for estimating the chromatic number
of a graph G = (V, E) is to partition E into the union E = E1∪E2, and then determine
(or find upper bounds for) the chromatic numbers of the spanning subgraphs G1 =
(V, E1) and G2 = (V, E2). Then we have χ(G) ≤ χ(G1)χ(G2). Theorem 1 provides a
better estimation of χ(G) if the circular chromatic numbers of G1 and G2 are known.

Theorem 3 Suppose G = (V, E). Let E = E1 ∪ E2 and Gi = (V, Ei) for i = 1, 2.
Then

χ(G) ≤ χ(G1 ⊕ G2) ≤ max{dχc(G1)χ(G2)e, dχ(G1)χc(G2)e}.
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Now we define some terms that will be used in the remaining part of the paper.
A homomorphism from a graph G to another graph H is an edge preserving mapping
from V (G) to V (H). If such a mapping exists, we say that G is homomorphic to H,
and denote this by G → H. It is known and easy to see that χ(G) ≤ n if and only if
G → Kn.

For any given rational p/q ≥ 2, a circular clique Kp/q is the graph with the vertex
set V (Kp/q) = {0, 1, 2, · · · , p − 1}, in which

uv ∈ E(Kp/q) if and only if |u − v|p ≥ q.

In the study of circular chromatic number of graphs, circular cliques play essentially
the same role as cliques (complete graphs) in the study of chromatic number. It is
known that χc(Kp/q) = χf (Kp/q) = p/q, and for any graph G, χc(G) ≤ p/q if and
only if G → Kp/q (cf. [24]).

Note that, if it is the case that χc(G) = χ(G) or χc(H) = χ(H), then the upper
bounds in Theorems 1 and 2 coincide with the trivial bound, χc(G ⊕ H) ≤ χ(G ⊕
H) ≤ χ(G)χ(H). Therefore, throughout the article, we assume χc(G) < χ(G) and
χc(H) < χ(H), when χ(G ⊕ H) or χc(G ⊕ H) is in consideration.

2 The Chromatic Number

In this section, we determine the chromatic number for the Cartesian sum of circular
cliques. Consequences of this result include Theorem 1.

Let x be an integer and m a positive integer. We denote by [x]m the remainder
of x dividing by m, i.e, [x]m is the unique integer x′ such that 0 ≤ x′ ≤ m − 1, and
x − x′ is a multiple of m.

Lemma 1 Let p, q, p′, q′ be positive integers with p = kq + r and p′ = k′q′ + r′, where

1 ≤ r < q and 1 ≤ r′ < q′. Then

χ(Kp/q ⊕ Kp′/q′) = max{d(p/q)(k′ + 1)e, d(p′/q′)(k + 1)e}.

Proof. Let G = Kp′/q′ ⊕ Kp/q. Without loss of generality, we may assume that
(p/q)(k′ + 1) ≥ (p′/q′)(k + 1). We shall prove that χ(G) = n = d(p/q)(k′ + 1)e.
By (1.2) and since circular cliques are star-extremal, it remains to show that G is
n-colorable.
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Let V (G) = {(i, j) : 0 ≤ i ≤ p′ − 1, 0 ≤ j ≤ p − 1}. For each (i, j) ∈ V (G), we
define a tile Bi,j as:

Bi,j = {([i + a]p′, [j + b]p) : 0 ≤ a ≤ q′ − 1, 0 ≤ b ≤ q − 1}.

Intuitively, we regard V (G) as a set of p×p′ grid points embedded on a torus. We
draw this torus as a (p×p′)-rectangle R, where the top and the bottom boundaries as
well as the left and the right boundaries are identified. As a convention, we assume
that the horizontal edge and the vertical edge of R, respectively, has lengths p′ and
p, as shown in Figure 1.

p

B0

B1

p’

B2

Bk

B k

Bk+1

Bt

Bt+k

Bt+k+1

Figure 1: Covering the torus grid with rectangles

Each tile Bi,j is a q× q′ rectangle, and covers qq′ grid points, with (i, j) as its left-
bottom point on R (viewing (0, 0) as the left bottom point of R). By definition of the
Cartesian sum, each Bi,j is an independent set of G. To show that G is n-colorable,
it suffices to prove that R can be covered by n tiles of the form Bi,j. Let

k′(q − r) = λq + r∗, where λ, r∗ are integers with 0 ≤ r∗ < q.

Let

z =
{

dr∗/(q − r)e, if r∗ < r;
0, if r∗ ≥ r.

The n tiles we use to cover R are Bt = Bit,jt
, t = 0, 1, · · · , n − 1, where:

it = [dtq′/(k + 1)e]p′, t = 0, 1, · · · , n − 1;

jt =







[tq]p, if 0 ≤ t < n − z(k + 1),
[tq − r∗ + s(q − r)]p, if n − (s + 1)(k + 1) ≤ t < n − s(k + 1),

and 0 ≤ s ≤ z − 1.

Note that, if r∗ ≥ r, then z = 0, and hence jt = [tq]p for all t.

Although the above formulas look complicated, the idea about the locations of
these tiles is quite simple. Assume r∗ ≥ r (that is, z = 0). We put the first tile, B0,
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at the left-bottom corner of R (see Figure 1). Then we put in the remaining tiles
one by one. Assume B0, B1, · · · , Bi−1 are put in (winding around the torus) already.
Then we put Bi exactly on the top of Bi−1 with a “little bit” horizontal shift to the
right. The shifts are carefully chosen so that the total of any k + 1 consecutive shifts
is equal to q′. Such a tiling process will wrap around the torus tightly, and as we will
show later, the two ends (the last k + 1 tiles and the first k + 1 tiles) meet perfectly
(without gaps).

Assume r∗ < r (that is, z ≥ 1). We first use the same tiling process in the above,
which, for this case, also wraps around the torus tightly, but the two ends may not

meet perfectly. There might be gaps between the last k + 1 tiles and the first k + 1
tiles. To mend this, we divide the last z(k + 1) tiles into z “strips,” where each strip
consists of consecutive k + 1 tiles. For instance, the first strip is formed by the last
k + 1 tiles, Bn−i for i = 1, 2, · · · , k + 1, the second strip is formed by the next k + 1
tiles, Bn−(k+1)−i for i = 1, 2, · · · , k + 1, etc. We shift each of the (k + 1) tiles in the
first strip vertically downwards by r∗ rows, and (if z ≥ 2) shift each tile in the s-th
strip vertically downwards by r∗ − (s − 1)(q − r) rows, for 2 ≤ s ≤ z.

In the following, we claim that these tiles wrap around the torus without gaps.
By looking at the first k + 1 tiles, B0, B1, · · · , Bk, we conclude that any horizontal
line of R intersects these tiles. In other words, for any 0 ≤ b ≤ p − 1, there exists
some a such that (a, b) is contained in some tile Bt.

Assume that there is a vertex, say (a, b), which is not covered by any of the tiles.
We search, from the point (a, b) on R, along the horizontal line passing through (a, b)
towards the left until we find a vertex which is covered by some tile. To be precise,
let β ≥ 1 be the smallest integer such that ([a − β]p′, b) is contained in some tile.
Assume ([a− β]p′, b) ∈ Bt. As ([a− β + 1]p′, b) 6∈ Bt, we know that ([a− β]p′, b) is on
the right boundary of Bt, i.e., [a − β]p′ = [it + q − 1]p′. We claim that

([a − β + 1]p′, b) ∈ Bt+k ∪ Bt+k+1,

which is in contrary to the choice of β. To this end, we consider two cases.

Case 1. 0 ≤ t < n − (k + 1) We claim:

{([it + x]p′, [jt + y]p) : q′ ≤ x ≤ q′ + bkq′/(k + 1)c, 0 ≤ y ≤ q} ⊆ Bt+k ∪Bt+k+1, (2.1)

which implies that ([a − β + 1]p′, b) ∈ Bt+k ∪ Bt+k+1, as q′ ≥ 2.

It follows from the definition that

[it+k+1 − it]p′ = q′; and

[it+k − it]p′ = d(t + k)q′/(k + 1)e − dtq′/(k + 1)e.
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Hence,
bkq′/(k + 1)c ≤ [it+k − it]p′ ≤ q′.

Therefore, to verify (2.1), by noting that the bottom of Bj+k+1 either touches or
overlaps with the top of Bj+k, it suffices to show that the following hold:

[jt − jt+k]p ≤ q, and [jt+k+1 − jt]p ≤ q. (2.2)

Assume z = 0. Since p = kq + r, we have

[jt − jt+k]p = [−kq]p = r;

[jt+k+1 − jt]p = [(k + 1)q]p = q − r.

As r < q and q − r ≤ q, (2.2) follows,

Assume z ≥ 1. Let δ = r∗ − (z − 1)(q − r). Depending on the values of t, it can
be verified that the values of jt − jt+k and jt+k+1 − jt have the following possibilities:

jt − jt+k ∈ {−kq, −(kq − (q − r)), −(kq − δ)}

and
jt+k+1 − jt ∈ {(k + 1)q, (k + 1)q − (q − r), (k + 1)q − δ}.

Again, because [−kq]p = r, [(k + 1)q]p = q − r, and δ ≤ q − r, we conclude that (2.2)
holds for all the above possibilities. This completes the proof of Case 1.

Intuitively, the argument for Case 1 shows that the tiles, B0, B1, · · · , Bn−(k+1),
wrap around part of the torus tightly, i.e., the right side of each tile Bt, for t ≤
n − (k + 1), is covered by or touch with the left sides of tiles Bt+k and Bt+k+1 (see
Figure 1).

Case 2. n − (k + 1) ≤ t < n Suppose t = n − (k + 1) + m for some 0 ≤ m ≤ k.

First we assume that r∗ < r. Then, by definition and some calculation, we have
n = (k′ + 1)k + d(k′ + 1)r/qe = (k + 1)(k′ + 1) − λ. Therefore,

jn−(k+1) = [(n − (k + 1))q − r∗]p

= [k′(k + 1) − λ)q − r∗]p

= [k′(kq + r)]p

= 0 = j0.

Thus, for each 0 ≤ l ≤ k, we have jn−(k+1)+l = jl = lq. In particular, jt = mq, i.e., Bt

and Bm are on the same horizontal level. We shall show that ([a − β + 1]p′, b) ∈ Bm.
This amounts to prove that

[im − in−(k+1)+m]p′ ≤ q′. (2.3)
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That is,
[dmq′/(k + 1)e − d(n − (k + 1) + m)q′/(k + 1)e]p′ ≤ q′.

Since dmq′/(k + 1)e < d(n − (k + 1) + m)q′/(k + 1)e < p′ + dmq′/(k + 1)e, this is
equivalent to

p′ + dmq′/(k + 1)e − d(n − (k + 1) + m)q′/(k + 1)e ≤ q′.

which holds if and only if
p′ ≤ nq′/(k + 1).

This is true since n ≥ (p/q)(k′ + 1) ≥ (p′/q′)(k + 1).

Next we assume that r∗ ≥ r. We shall prove that if 1 ≤ m ≤ k, then ([a − β +
1]p′, b) ∈ Bm−1 ∪ Bm; and if m = 0, then ([a − β + 1]p′, b) ∈ Bn−1 ∪ B0.

If m ≥ 1, then jn−(k+1)+m = [(n − (k + 1) + m)q]p = r∗ + (m − 1)q. Hence
jm−1 ≤ jt ≤ jm. To prove that ([a − β + 1]p′, b) ∈ Bm−1 ∪ Bm, it suffices to show
that the right side of the rectangle Bt touches or overlaps with the left sides of Bm

and Bm−1. This is equivalent to show that [im−1 − it]p′ ≤ q′ and [im − it]p′ ≤ q′. As
it − p′ ≤ im−1 ≤ im < it, it suffices to show that [im − it]p′ = [im − in−(k+1)+m]p′ ≤ q′,
which is (2.3), and has been verified in the above.

Assume m = 0. It amounts to prove that the right side of Bn−(k+1) touches or
overlaps with the left sides of B0 and Bn−1. This is true since, by a special case of
(2.3), we have [i0 − in−(k+1)]p′ ≤ q′, and similar to the argument used in Case 1, we
have [in−1 − in−(k+1)]p′ ≤ q′.

Proof of Theorem 1) Assume χc(G) = p/q and χc(H) = p′/q′. Then there is a
homomorphism f from G to Kp/q, and a homomorphism g from H to Kp′/q′ . It is easy
to check that the mapping φ(x, y) = (f(x), g(y)) is a homomorphism from G ⊕ H to
Kp/q ⊕ Kp′/q′. Therefore χ(G ⊕ H) ≤ χ(Kp/q ⊕ Kp′/q′). The conclusion then follows
from Lemma 1. The moreover part follows from (1.2).

The next result follows from Theorem 1 and (1.2).

Corollary 1 For any two graphs G and H, if χc(G)χ(H) ≥ χ(G)χc(H) and G is

star-extremal, then

χ(G ⊕ H) = dχc(G)χ(H)e.

Čižek and Klavžar [3] showed that if G and H are vertex-critical and are not
complete graphs, then χ(G ⊕ H) < χ(G)χ(H). It is known [16] that if G is vertex-
critical with χ(G) = k and with girth (length of a shortest cycle) at least k, then
χc(G) ≤ k − (1/2). Hence, by Theorem 1, we have
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Corollary 2 Let G be a vertex-critical graph with χ(G) = k and girth at least k. If

H is a graph such that χc(G)χ(H) ≥ χ(G)χc(H), then

χ(G ⊕ H) ≤ d(k − 1/2)χ(H)e.

3 The Circular Chromatic Number

Theorem 1 gives the best upper bound for the chromatic number of the Cartesian
sum G ⊕ H in terms of χc(G) and χc(H). However, the best upper bound for the
circular chromatic number of G ⊕ H in terms of χc(G) and χc(H) for all graphs G
and H remains unknown. We propose:

Conjecture 1 For any graphs G and H,

χc(G ⊕ H) ≤ max{χc(G)χ(H), χ(G)χc(H)}.

As we pointed out earlier, if Conjecture 1 is true, then this upper bound would be
the best. Theorem 2 confirms the conjecture for some special cases.

To prove Theorem 2, we make use of the following result.

Lemma 2 Let p, q, p′, q′ be positive integers with p = kq + r and p′ = k′q′ + r′, where

1 ≤ r < q and 1 ≤ r′ < q′. Then

χc(Kp/q ⊕ Kp′/q′) =
{

(p/q)(k′ + 1), if p′(p + q − 1) ≤ p(p′ + q′ − r′);
(p′/q′)(k + 1), if p(p′ + q′ − 1) ≤ p′(p + q − r).

Proof. By (1.1), χc(Kp/q ⊕ Kp′,q′) ≥ max{(p/q)(k′ + 1), (p′/q′)(k + 1)/q′}. Thus, we
only need to verify the other direction of the inequality.

By symmetry, it is enough to verify the second case in Lemma 2. Assume p(p′ +
q′ − 1) ≤ p′(p + q − r). Observe that (p′/q′)(k + 1) ≥ (p/q)(k′ + 1) is equivalent to
p(p′ + q′ − r′) ≤ p′(p + q − r). So p(p′ + q′ − 1) ≤ p′(p + q − r) implies that

(p′/q′)(k + 1) ≥ (p/q)(k′ + 1).

Let G = Kp′/q′ ⊕Kp/q. It suffices to find an (n, q′)-coloring for G, where n = p′(k+1).
Before defining such a coloring, we need a few more notations. Divide p′ + q′ − 1 into
q numbers almost evenly, by letting

ti = di(p′ + q′ − 1)/qe − d(i − 1)(p′ + q′ − 1)/qe, i = 1, 2, · · · , q.
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Then, t1 + t2 + · · · + tl = dl(p′ + q′ − 1)/qe for any 1 ≤ l ≤ q.

Define yj for j = 0, 1, ..., p − 1 by:

y0 = 0; and
yj = yj−1 + tb, if j ≥ 1, and j = sq + b, where s, b are integers and 1 ≤ b ≤ q.

For any integers z, w, the interval from z to w modular n, denoted by [z, w]n, is
the set of consecutive integers from [z]n to [w]n, with calculation taken under modulo
n. For instance, [2, 5]7 = {2, 3, 4, 5}, [5, 2]7 = {5, 6, 0, 1, 2} and [13, 8]7 = {6, 0, 1}.

For each 0 ≤ j ≤ p − 1, let Ij be the interval:

Ij = [yj, yj + p′ − 1]n.

For 0 ≤ x ≤ n − 1, let:

Ax = {(i, j) : i = [x]p′ and x ∈ Ij}.

The coloring f is defined by f(i, j) = x, if (i, j) ∈ Ax. It remains to show that f
is an (n, q′)-coloring for G. Suppose (i, j)(i′, j ′) is an edge in G. Let f(i, j) = x and
f(i′, j ′) = y. We need to prove that |x − y|n ≥ q′.

By definition, ii′ ∈ E(Kp′,q′) or jj ′ ∈ E(Kp,q). If ii′ ∈ E(Kp′,q′), then |i− i′|p′ ≥ q′.
By definition, i = [x]p′ and i′ = [y]p′, implying |x − y|n ≥ q′ (since n = p′(k + 1)).

Assume jj ′ ∈ E(Kp,q). By definition, x ∈ Ij, y ∈ Ij′ and |j − j ′|p ≥ q. Hence,

y ∈ Ij+q ∪ Ij+q+1 ∪ · · · ∪ Ij+p−q,

with the sub-indices taken under modulo p. This implies,

y ∈ [yj+q, yj+p−q + p′ − 1]n.

Let j = sq + b for some 1 ≤ b ≤ q. Then, we have

x ∈ Ij = [yj, yj + p′ − 1]n,

where yj = s(p′ + q′ − 1) + t1 + t2 + · · ·+ tb.

Hence, to show that |x − y|n ≥ q′, it suffices to verify the following:

q′ ≤ |yj+q − (yj + p′ − 1)| ≤ n − q′ (3.1)

q′ ≤ |(yj+p−q + p′ − 1) − yj| ≤ n − q′. (3.2)
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Since yj+q = yj + p′ + q′ − 1, so |yj+q − (yj + p′ − 1)| = q′. Thus, (3.1) holds. As
j + p − q = j + (k − 1)q + r, we have

yj+p−q = yj + (k − 1)(p′ + q′ − 1) + tb+1 + tb+2 + · · ·+ tb+r, implying

(yj+p−q + p′ − 1) − yj = k(p′ + q′ − 1) + tb+1 + · · · + tb+r − q′.

Since k ≥ 2, we have (yj+p−q + p′ − 1) − yj ≥ q′. It remains to show that (yj+p−q +
p′ − 1) − yj ≤ n′ − q′. As tb+1 + · · · + tb+r ≤ d(r/q)(p′ + q′ − 1)e, to prove (3.2), it
suffices to show that

k(p′ + q′ − 1) + d(r/q)(p′ + q′ − 1)e ≤ n.

which is equivalent to

k(p′ + q′ − 1) + (r/q)(p′ + q′ − 1) ≤ n.

The above is true by the assumption that p(p′+q′−1) ≤ p′(p+q−r). This completes
the proof.

Proof of Theorem 2) Suppose χc(G) = p/q and χc(H) = p′/q′. Then G admits
a homomorphism to Kp/q, and H admits a homomorphism to Kp′/q′ , which implies
that G ⊕ H admits a homomorphism to Kp/q ⊕ Kp′/q′ . Therefore,

χc(G ⊕ H) ≤ χc(Kp/q ⊕ Kp′/q′).

The conclusion of Theorem 2 then follows from Lemma 2. The moreover part follows
from (1.1).

Corollary 3 If χc(G) = p/q, [p]q = 1 and χc(G)χ(H) ≥ χ(G)χc(H) then

χc(G ⊕ H) ≤ χc(G)χ(H).

Moreover, the equality holds if G is star-extremal.

Proof. Assume p = kq + 1 and χc(H) = p′/q′ where p′ = k′q′ + r′. The hypothesis
χc(G)χ(H) ≥ χ(G)χc(H) is equivalent to p′(p+ q−1) ≤ p(p′ + q′−r′). The moreover
part follows from (1.1).

Another consequence of Theorem 2 is the case when r = r′ = 1, for which, by
Corollary 3, the value of χc(Kkq+1⊕Kk′q′+1) can be completely determined, confirming
Conjecture 1 for this case.
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Corollary 4 For any graphs G and H with χc(G) = p/q and χc(H) = p′/q′. If

[p]q = 1 and [p′]q′ = 1, then

χc(G ⊕ H) ≤ max{χc(G)χ(H), χ(G)χc(H)}.

Moreover, the equality holds if G and H are star-extremal.

In searching of the graphs with χ(G ⊕ H) < χ(G)χ(H), Borowiecki [2] pointed
out that χ(C5 ⊕ C5) ≤ 8. By Corollary 4 and the fact that χc(C2k+1) = χf (C2k+1) =
2 + (1/k) for all odd cycles, we obtain a stronger and more general result:

Example 1 For any n ≥ k ≥ 2, χc(C2n+1 ⊕ C2k+1) = 6 + (3/k).
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