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Abstract

Let S(r) denote a circle of circumference r. The circular consecutive

choosability chcc(G) of a graph G is the least real number t such that

for any r > χc(G), if each vertex v is assigned a closed interval L(v)

of length t on S(r), then there is a circular r-colouring f of G such

that f(v) ∈ L(v). We investigate, for a graph, the relations between

its circular consecutive choosability and choosability. It is proved that

for any positive integer k, if a graph G is k-choosable, then chcc(G) 6

k + 1 − 1/k; moreover, the bound is sharp for k > 3. For k = 2, it is

proved that if G is 2-choosable then chcc(G) 6 2, while the equality

holds if and only if G contains a cycle. In addition, we prove that

there exist circular consecutive 2-choosable graphs which are not 2-

choosable. In particular, it is shown that chcc(G) = 2 holds for all

cycles and for K2,n with n > 2. On the other hand, we prove that

chcc(G) > 2 holds for many generalized theta graphs.
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1 Introduction

Choosability is a notion introduced independently by Vizing [9] in 1976 and

Erdős, Rubin, and Taylor [2] in 1980, and has been widely studied ever since.

Let G be a graph. A list assignment is a function L that assigns to each

vertex with a set of permissible colours. We call G list L-colourable if there

exists a proper colouring f such that f(v) ∈ L(v) holds for every vertex

v. A graph G is k-choosable if G is list L-colourable for every list L with

|L(v)| = k for all v. The choice number or choosability of G is defined as

ch(G) = min{k: G is k-choosable}.

Besides the choice number, several variations of choosability have also

been studied in the literature. One of them is the consecutive choosability,

introduced by Waters [10], in which the list assignment for each vertex is a

set of consecutive integers. Another variation, called circular choosability,

is motivated by the circular colouring of graphs.

For a positive real number r, let S(r) denote the circle obtained from the

interval [0, r] by identifying 0 and r into a single point. For a real number

t, denote by [t]r the remainder of t upon division by r. For a, b ∈ S(r), the

distance between a and b is |a−b|r = min{|a−b|, r−|a−b|}, and the intervals

[a, b]r and (a, b)r are defined as [a, b]r = {t ∈ S(r) : [t− a]r 6 [b− a]r} and

(a, b)r = {t ∈ [0, r) : 0 < [t − a]r < [b − a]r}. Suppose G = (V, E) is a

graph. A circular r-colouring of G is a mapping f : V (G) → S(r) such

that the inequality |f(u) − f(v)|r > 1 holds for every edge uv of G. The

circular chromatic number χc(G) of G is defined as the least r such that G

admits a circular r-colouring. It is known that χ(G) = dχc(G)e holds for

every graph G. Thus, the circular chromatic number of G is a refinement of

the chromatic number of G. Circular colouring has been studied extensively

in the literature in the past two decades (see [12, 13] for surveys on this

subject).

The concept of circular choosability of graphs was first studied in the

article by Zhu [14]. Given a graph G and a positive real number r, an

r-circular colour-list assignment for G is a function L that assigns to each

vertex v a set L(v) of disjoint union of closed intervals on S(r). A circular L-

colouring of G is a circular r-colouring f of G such that f(v) ∈ L(v) for every

vertex v. For a real t 6 r, if for each v, the sum of the lengths of the disjoint

intervals in L(v) is equal to t, then L is called a (t, r)-circular colour-list
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assignment. A graph G is circular t-choosable if G admits a circular L-

colouring for any r and for any (t, r)-circular colour-list assignment L. The

circular choosability chc(G) of G (also known as the circular choice number

or the circular list chromatic number) is defined as:

chc(G) = inf{t : G is circular t-choosable}.

Parallel to the investigation of the consecutive variation of choosability

[10], it is natural to consider the consecutive variation of circular choosability

in which the list of each vertex is a single closed interval on S(r). This

is a notion first introduced and studied by Lin et al. [5]. An r-circular

consecutive colour-list assignment of G is a mapping L which assigns to

each vertex v with a closed interval L(v) on S(r). If for every vertex v, the

length of L(v) is a fixed real t, then L is called a (t, r)-circular consecutive

colour-list assignment of G. We call G circular consecutive (t, r)-choosable

if G is circular L-colourable for every (t, r)-circular consecutive colour-list

assignment L of G.

Notice that if r < χc(G), then G is not circular L-colourable for any

(t, r)-circular colour-list assignment L. Therefore, we restrict our attention

to only real numbers r with r > χc(G).

Definition 1. Suppose r > χc(G). The circular consecutive choosability of

G with respect to r is defined as

chr
cc(G) = inf{t : G is circular consecutive (t, r)-choosable}.

The circular consecutive choosability of G is defined as

chcc(G) = sup{chr
cc(G) : r > χc(G)}.

Equivalently, chcc(G) is the infimum t such that G is circular consecutive

(t, r)-choosable for any r > χc(G).

Circular colouring of graphs can be used as a model for periodic schedul-

ing problems. Let each vertex of a graph G represent a job. Each job needs

to be carried out once in every period of length r, and it takes one unit of

time to finish each job once. A pair of adjacent vertices in G represent two

jobs that one of them needs to be finished before the other can start (that is,

the unit times to complete the two jobs are disjoint). A circular r-colouring

of the graph G is a scheduling satisfying all the requirements above. One
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may add another natural constraint to the scheduling problem, namely, the

job represented by a vertex v can only be performed during a certain time

interval L(v) on a period of length r. Then such a scheduling corresponds

to a consecutive circular list colouring of the graph.

An application of circular choosability of graphs is its use to the inductive

proofs of circular colourability of graphs. To prove a graph G is circular r-

colourable, one may find a circular r-colouring f of G−H for some induced

subgraph H of G (by inductive hypothesis), then extend f to a circular r-

colouring for G. In the extension, the colours available to vertices of H are

restricted by the already coloured vertices in G − H . Thus we are facing

a circular list colouring problem. Such techniques have been used in the

study of the circular chromatic number for planar graphs with large girth

(cf. [1, 3, 4, 11]).

In the inductive proof described above, if each vertex x of H is adjacent

to only one coloured vertex in G−H , then the set of available colours to x

is a closed interval on S(r). Therefore we are facing a circular consecutive

list colouring problem for H .

A circular consecutive list colouring is a special case of a circular list

colouring in which the list of permissible colours for each vertex is a single

closed interval. We may also view a circular colouring as a special list circular

colouring of G in which each vertex is given the whole circle S(r) as the set

of permissible colours. In this sense, circular consecutive list colouring of a

graph lies in between circular colouring and list circular colouring. Hence,

the parameter chcc(G) is naturally closely related to χc(G), chc(G), and

ch(G). In [5], it was shown that if G is a graph on n vertices, then

χ(G) − 1 6 chcc(G) 6 2χc(G)(1− 1/n)− 1.

The values of chcc(G) for complete graphs, trees, even cycles, and balanced

complete bipartite graphs were determined; upper and lower bounds for

chcc(G) were given for some other graphs [5].

In this article, we investigate for a graphG, the relations between chcc(G)

and ch(G). In Section 2, we prove that if G is k-choosable, then chcc(G) 6

k + 1 − 1/k. We then show that the bound is tight for k > 3: For any

k > 3 and for any ε > 0, there is a k-choosable graph G with chcc(G) >

k+ 1− 1/k− ε. For k = 2, we improve this bound by showing, in Section 3,

that every 2-choosable graph G has chcc(G) 6 2. This bound is also tight as

any 2-choosable graph G containing a cycle has chcc(G) = 2. Although the
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result for k = 2 implies that every 2-choosable graph is circular consecutive

2-choosable, the converse of the statement is not true. In Section 4, we

show that every odd cycle (which is not 2-choosable) is circular consecutive

2-choosable.

For positive integers a, b, and c, the theta graph θa,b,c is constructed by

joining two vertices with three internally disjoint paths of lengths a, b, and

c, respectively. The heart of a graph is obtained by sequentially deleting

vertices of degree 1. A complete characterization of 2-choosable graphs is

obtained in [2]:

Theorem 1. [2] A connected graph G is 2-choosable if and only if the heart

of G is K1, an even cycle, or θ2,2,2n for some n > 1.

A characterization of circular consecutive 2-choosable graphs remains an

open problem. Referring to Theorem 1, to further investigate this problem,

it is natural to study the family of generalized theta graphs. A general-

ized theta graph θk1 ,k2,··· ,kn
is obtained by joining two vertices by n inter-

nally disjoint paths of lengths k1, k2, · · · , kn. In Section 5, we prove that

chcc(θ2, 2, · · · , 2
︸ ︷︷ ︸

n

) = 2 holds for any integer n > 2. On the other hand, we

show that chcc(θ2,2,2,n) > 2 for n 6= 2, 4, 6.

2 k-choosable graphs

We establish an upper bound of chcc(G) for a graph G, in terms of the

choosability of G (Corollary 3). Then we prove that for every k > 3, there

exist k-choosable graphs whose circular consecutive choosability is arbitrar-

ily close to the upper bound (Theorem 6).

Lemma 2. Let k > 2 be an integer and let G be a graph with ch(G) = k

then chr
cc(G) 6 k + (k − 1)(r− brc)/brc for every r > χc(G).

Proof. Let s = k+(k−1)(r−brc)/brc, and let L be an s-circular consecutive

list assignment of G with respect to r. For l = 0, 1, . . .brc − 1 let Il =

[lr/brc, (l + 1)r/brc − 1]r be an interval in S(r). For every v ∈ V (G) let

S(v) = {j | Ij ∩ L(v) 6= ∅}. Since L(v) is an interval of length s = k +

(k − 1)(r− brc)/brc, it follows that |S(v)| > k. As ch(G) = k it is possible

to choose k(v) ∈ S(v) for every v ∈ V (G) so that k(v) 6= k(w) for every

vw ∈ E(G). By the choice of S(v) we can choose f(v) ∈ Ik(v)∩L(v) for every
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v ∈ V (G). It remains to note that for every i, j ∈ {0, 1, . . . , brc − 1}, i 6= j

and every x ∈ Ii y ∈ Ij we have |x−y|r > 1 and therefore |f(v)−f(w)|r > 1

for every vw ∈ E(G).

Corollary 3. Let k > 2 be an integer. If a graph G has list chromatic

number k, then chcc(G) 6 k + 1 − 1/k.

Proof. If χc(G) 6 r 6 k then chr
cc(G) 6 r 6 k. If r > k then chr

cc(G) 6

k + (k− 1)(r− brc)/brc < k + (k − 1)/k by Lemma 2.

We shall show that for k > 3, the upper bound given in Corollary 3 is

tight. For this purpose, we need an alternate definition of chcc(G) given in

[5].

Given positive integers p > 2q, a (p, q)-colouring of a graph G is a

mapping f : V (G) → {0, 1, · · · , p − 1} such that for any edge xy of G,

q 6 |f(x)−f(y)| 6 p− q. For any integer a, [a]p denotes the remainder of a

divided by p. For a, b ∈ {0, 1, · · · , p−1}, the circular integral interval [a, b]p

is defined as

[a, b]p = {a, a+ 1, a+ 2, · · · , b}.

Here the additions are modulo p. Suppose G is a graph and p, q are positive

integers such that p/q > χc(G), and s is a positive integer. Let l : V (G) →

{0, 1, · · · , p− 1} be a mapping. A (p, q)-colouring f of G is compatible with

(l, s) if for any vertex x, f(x) ∈ [l(x), l(x) + s − 1]p. We say a graph G

is circular consecutive (p, q)-s-choosable if for any mapping l : V (G) →

{0, 1, · · · , p− 1}, G has a (p, q)-colouring f which is compatible with (l, s).

We define the consecutive (p, q)-choosability of G as

τp,q(G) = min{s : G is circular consecutive (p, q)-s-choosable}.

The following lemma is proved in [5].

Lemma 4. For any graph G and for any r = p/q > χc(G),

τp,q(G) = bchr
cc(G) · qc + 1.

Now we prove a technical lemma which is later used to lower bound the

maximum circular consecutive choosability of graphs of fixed treewidth.

A graph G is called a k-tree if the vertices of G can be ordered as

v1, v2, · · · , vn in such a way that {v1, v2, · · · , vk} induces a Kk, and for each

j > k+1, the set N+(vj) = {vi : i < j, vi ∼ vj} induces a Kk. The treewidth

of a graph G is the minimum k such that G is a subgraph of a k-tree.
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Lemma 5. Let k > 2, p and q be positive integers such that p/q > k, and

let s be a positive integer. Suppose that every graph G with treewidth at

most k − 1 is circular consecutive (p, q)-s-choosable. Then there exists a

non-empty family S of k-element subsets of {0, 1, . . . , p − 1} such that for

every S ∈ S the following conditions hold:

1. for every distinct x1, x2 ∈ S we have q 6 |x1 − x2| 6 p− q,

2. for every X ⊂ S with |X | = k− 1 and every i ∈ {0, 1, . . . , p− 1} there

exists S ′ ∈ S such that S ′ = X ∪ {x0} and x0 ∈ [i, i+ s − 1]p.

Proof. For a graph H and a (p, q)-colouring f of H let S(H, f) denote the

family of sets of colours of cliques of size k in H , and let ξ(H, f) = |S(H, f)|.

Suppose l : V (H) → {0, 1, . . . , p− 1} and there is a (p, q)-colouring f of H

compatible with (l, s). Then let

ξ(H, (l, s)) = min{ξ(H, f) : f is a (p, q)-colouring of H compatible with (l, s)}.

Choose a graph G of treewidth at most k − 1 and a map l : V (G) →

{0, 1, . . . , p− 1} so that ξ(G, (l, s)) is maximum over all graphs of treewidth

at most k−1 and all maps l. Construct the graph G′ and a map l′ : V (G′) →

{0, 1, . . . , p − 1} as follows: For every clique W ⊆ V (G) with |W | = k − 1

and every i ∈ {0, 1, . . . , p− 1} create a vertex vi
W of degree k− 1 of G′ that

is joined by edges to vertices of W and set l′(vi
W ) = i. Let l′ be identical

to l on V (G). Then G′ has treewidth at most k − 1. By the choice of

G there exists a (p, q)-colouring f ′ of G′ compatible with (l′, s) such that

S(G′, f ′) = S(G, f ′).

We claim that S = S(G, f ′) satisfies the requirements of the lemma.

Clearly S is non-empty. For every S ∈ S there exists a clique U ⊆ V (G)

such that S = f ′(U). Therefore the first requirement is satisfied by the

definition of a (p, q)-colouring. Similarly, for every X ⊂ S with |X | = k − 1

there exists a clique W ⊂ U such that |W | = k − 1 and X = f ′(W ). Then

S ′ = f ′(W ∪ {vi
W}) satisfies the second requirement.

Theorem 6. For every k > 3 and ε > 0 there exists a graph Gk,ε such that

Gk,ε has treewidth at most k − 1 and chcc(Gk,ε) > k + 1 − 1/k− ε.

Proof. We will show that for every positive integer n and every integer

k > 3 there exists a graph Gk,n of treewidth at most k − 1 that is not

circular consecutive (p, q)-s-choosable, where p = nk(k+ 1)− 2, q = nk and
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s = nk(k + 1) − n − 2. By Lemma 4, for r = k + 1 − 2/nk, chcc(Gk,n) >

chr
cc(Gk,n) > (p−1)/q = (nk(k+1)−n−2−1)/nk = k+(k−1)/k−3/nk.

Suppose, on the contrary, that for some n and some k > 3 every graph

of treewidth at most k − 1 is circular consecutive (p, q)-s-choosable. By

Lemma 5 then there exists a family S of k-element subsets of {0, 1, . . . , p−1}

satisfying the requirements of that lemma.

Choose S = {a1, . . . , ak} ∈ S so that a1, . . . , ak appear in {0, 1, . . . , p−1}

in circular order and ([a2 − a1]p, [a3 − a2]p, . . . , [ak − ak−1]p) is lexicographi-

cally maximum. Let ak+1 = a1, by convention.

Consider X = S − {a2} and i = a1 + d([a3 − a1]p + n)/2e. Then by

condition 2 in Lemma 5 there exists S ′ ∈ S such that S ′ = X ∪ {a′2} and

a′2 ∈ [i, i + s − 1]. Note that a′2 ∈ [a1, a3]p. Otherwise a′2 ∈ [al, al+1]p for

some l > 3, and we obtain contradiction as follows,

p =

l−1∑

j=1

[aj+1 − aj]p + [a′2 − al]p + [al+1 − a′2]p +

k∑

j=l+1

[aj+1 − aj ]p

> q(l− 1 + 2 + k − l) = q(k + 1) = p+ 2.

Since a′2 6∈ [i− n, i− 1], it follows that

|[a3 − a′2]p − [a′2 − a1]p| > n− 1.

Hence

max{[a3−a
′
2]p, [a

′
2−a1]p} > ([a3−a

′
2]p+[a′2−a1]p+n−1)/2 = ([a3−a1]p+n−1)/2.

By the choice of S, we have

[a2 − a1]p > max{[a′2 − a1]p, [a3 − a′2]p}

> ([a3 − a1]p + n − 1)/2 = ([a3 − a2]p + [a2 − a1]p + n− 1)/2.

Consequently,

[a2 − a1]p > [a3 − a2]p + n − 1.

By considering X = S−{al} for l ∈ {3, . . . , k} and i = al−1 + q+n, and

using an argument similar to the above, we deduce [al − al−1]p > q + n. A

contradiction follows:

p =
k∑

j=1

[aj+1 − aj]p > [a2 − a1]p + (q + n)(k − 2) + [a1 − ak]p

> q + n + n− 1 + (q + n)(k − 2) + q = (q + n)k − 1 = p+ 1.
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Since graphs of treewidth at most (k − 1) are k-choosable, Theorem 6

shows that the bound of Corollary 3 is tight.

Corollary 7. If G is a series-parallel graph, then chcc(G) 6 11/3. For any

ε > 0, there is a series-parallel graph G with chcc(G) > 11/3− ε.

3 2-choosable graphs

We improve the bound in Corollary 3 for k = 2. Precisely, we prove that if

G is 2-choosable, then chcc(G) 6 2. Combining this with a result in [5], the

value of chcc(G) can be determined in linear time for any 2-choosable graph

G.

It is easy to see that G is circular consecutive 2-choosable if and only if

the heart of G is circular consecutive 2-choosable. The graphs K1 and even

cycles are known [5] to be circular consecutive 2-choosable. To prove that

every 2-choosable graph is circular consecutive 2-choosable, by Theorem 1

it remains to show that for any positive integer n, chcc(θ2,2,2n) = 2, which

we prove in the following result.

Theorem 8. Let G = θ2,2,2n with V (G) = {u, v, x1, x2, · · · , x2n+1} and

E(G) = {x1u, x1v, x2n+1u, x2n+1v} ∪ {xjxj+1 : j = 1, 2, · · · , 2n}. Let r > 2

and l : V (G) → S(r) be an arbitrary mapping and let L(x) = [l(x), l(x)+2]r.

Then G is circular L-colourable.

To prove Theorem 8, we first establish a lemma concerning circular list

colouring of paths. Given a path P = (p0, p1, . . . , pk) and a list-assignment L

that assigns to each vertex of P an interval of S(r), we want to find possible

colours that can be assigned to p0 and pk in a circular L-colouring of P .

Theorem 9. Suppose 2 < r < 4 and k > d2/(r−2)e and P = (p0, p1, · · · , pk)

is a path of length k. Let l : P → S(r) be any mapping such that |l(pi) −

l(pi+1)|r > 1 for 0 6 i 6 k − 1. Let L(pi) = [l(pi), l(pi) + 2]r. Then the

following hold:

(1) There exists a point t ∈ L(p0) such that for any t′ ∈ L(pk) there is a

circular L-colouring f of P with f(p0) = t and f(pk) = t′.

(2) For any 0 < ` < 2, there exist an interval X ⊆ L(p0) of length ` and

an interval Y ⊆ L(pk) of length 2− `, such that for any t ∈ X and for
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any t′ ∈ Y there is a circular L-colouring f of P with f(p0) = t and

f(pk) = t′.

By taking ` to be real number approaching 0, we can view statement

(1) as a limit case of statement (2), where a single colour is viewed as an

colour interval of length 0. Nevertheless, we shall prove the two statements

separately.

To prove Theorem 9, we first define some notation and present two lem-

mas. We say two colours t, t′ ∈ S(r) are adjacent if |t−t′|r > 1. For t ∈ S(r),

denote by N (t) the set of colours adjacent to t, namely N (t) = [t+1, t−1]r.

For a subset A of S(r), let N (A) = ∪t∈AN (t).

Lemma 10. Suppose I = [a, b]r is an interval of S(r) of length ` = [b−a]r.

If ` > 2, then N (I) = S(r). Otherwise N (I) = [a+ 1, b− 1]r.

The proof of Lemma 10 is trivial and omitted.

Lemma 11. Suppose 2 < r < 4, a, b ∈ S(r) and |a − b|r > 1. If I =

[s, s+ `]r ⊆ [b, b+ 2]r, then the following hold.

(1) If ` > r− 2, then there is an interval I ′ of length `− (r− 2) such that

I ′ ⊆ [a, a+ 2]r and I = N (I ′).

(2) If ` 6 r− 2, then there is a colour t′ ∈ [a, a+ 2]r such that I ⊆ N (t′).

Proof. First we observe that if ` = r− 2, then by (1), there is an interval I ′

of [a, a+ 2]r of length 0 such that I = N (I ′). Here by an interval of length

0 we mean a single point. So in this case, the conclusions in (1) and (2)

coincide.

(1): Assume ` > r − 2. Let I ′ = [s− 1, s− 1 + `− (r− 2)]r. By Lemma

10, N (I ′) = I = [s, s+ `]r = I . Now we show that I ′ ⊆ [a, a+ 2]r.

First we show that

I ′ = [s− 1, s− 1 + `− (r− 2)]r ⊆ [b− 1, b+ 3]r.

Assume t ∈ [s− 1, s− 1 + `− (r− 2)]r. Then [t− (s− 1)]r 6 `− (r− 2). We

need to show that [t− (b− 1)]r 6 [b+ 3 − (b− 1)]r = 4 − r. Observe that

[t− (b− 1)]r = [t− (s − 1) + s− b]r = [[t− s+ 1]r + [s− b]r]r.

Because [s, s+ `]r ⊆ [b, b+ 2]r, we conclude that [s− b]r 6 2 − `. Hence

[[t− s+ 1]r + [s− b]r]r = [t− s+ 1]r + [s− b]r 6 `− (r− 2) + 2− ` = 4− r.
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It remains to show that [b−1, b+3]r ⊆ [a, a+2]r. If t ∈ [b−1, b+3]r, then

[t−b+1]r 6 4−r. Because 1 6 [b−a]r 6 r−1, we have [b−1−a]r 6 r−2.

It follows that

[t− a]r = [t− b+ 1 + b− 1− a]r

= [[t− b+ 1]r + [b− 1− a]r]r 6 4− r + r − 2 = 2.

Therefore t ∈ [a, a+ 2]r.

(2): Assume ` 6 r − 2. Let I ′′ be an interval contained in [b, b+ 2]r of

length r−2 such that I ⊆ I ′′. Apply (1) to I ′′, we conclude that there exists

t ∈ [a, a+ 2]r such that I ′′ = N (t). Hence I ⊆ N (t).

Proof of Theorem 9 We first consider the case that k = d2/(r− 2)e.

(1) Let Ik = L(pk). By repeatedly applying Lemma 11, we conclude that

there are intervals Ik−1, Ik−2, · · · , I1 such that

• Ij is contained in L(pj).

• Ij has length 2 − (k − j)(r− 2).

• Ij+1 = N (Ij).

Since I1 has length 2− (k− 1)(r− 2) 6 r− 2, apply Lemma 11 again, there

is a colour t ∈ L(p0) such that I1 ⊆ N (t).

For any t′ ∈ L(pk) = Ik, there are colours cj ∈ Ij for j = k−1, k−2, · · · , 1

such that t′ ∈ N (ck−1) and cj+1 ∈ N (cj) for j = k − 2, k − 3, · · · , 1 and

c1 ∈ N (t). Let f(p0) = t, f(pk) = t′ and f(pj) = cj for j = 1, 2, · · · , k − 1.

Then f is a circular L-colouring of Pk satisfying the requirements of the

theorem. This completes the proof of (1).

(2) Let q = d`/(r − 2)e. Similarly as in the proof of (1), by repeatedly

applying Lemma 11, we have the following:

• For j = k, k − 1, k − 2, · · · , q, there are intervals Ij ⊆ L(pj) of length

2− (k − j)(r− 2) and Ij+1 = N (Ij) for j = k − 1, k − 2, · · · , q.

• For j = 0, 1, 2, · · · , q, there are intervals Jj ⊆ L(pj) of length 2−j(r−2)

with N (Jj) = Jj−1 for j = 1, 2, · · · , q.

Let

δ = q(r− 2)− ` and ε = (k − q)(r− 2) + `− 2.
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Let J ′
q be a closed interval contained in L(pq) of length 2 − q(r − 2) + δ

containing Jq, and let I ′q be a closed interval contained in L(pq) of length

2− (k − q)(r− 2) + ε containing Iq. As the sum of the lengths of J ′
q and I ′q

is equal to 2 and both are contained in L(pq) which is an interval of length

2, I ′q ∩ J
′
q 6= ∅.

Let s ∈ I ′q∩J
′
q . Since Iq ⊆ I ′q and Iq has length 2−(k−q)(r−2), there is a

colour s′ ∈ Iq such that |s−s′|r 6 ε. Thus N (s) is an interval which is a shift

of the interval N (s′) by a distance |s− s′|r 6 ε. Since N (s′)∩ Iq+1 = N (s′),

which is an interval of length r− 2, it follows that I ′q+1 = N (s)∩ Iq+1 is an

interval of length at least r−2−ε. For j = q+2, q+3, · · · , k, let I ′j = N (I ′j−1),

then I ′j ⊆ Ij ⊆ L(pj) and has length at least (j−q)(r−2)− ε. In particular,

I ′k ⊆ L(pk) has length at least (k − q)(r − 2) − ε = 2 − `. Similarly, let

J ′
q−1 = N (s) ∩ Jq−1 for j = q − 2, q − 3, · · · , 1, let J ′

j = N (J ′
j+1). We have

J ′
j ⊆ L(pj) and J ′

0 has length q(r− 2)− δ = `.

Let X = J ′
0 and Y = I ′k. For t ∈ X and t′ ∈ Y , there are colours cj ∈ I ′j

for j = k−1, k−2, · · · , q+1 such that t′ ∈ N (ck−1) and cj ∈ N (cj−1) for j =

k−1, k−2, · · · , q+1. Similarly, there are colours cj ∈ J ′
j for j = 1, 2, · · · , q−1

such that t ∈ N (c1) and cj+1 ∈ N (cj) for j = 1, 2, · · · , q − 2. Then f(pk) =

t′, f(p0) = t, f(pq) = s and f(pj) = cj for j = 1, 2, · · · , q−1, q+1, · · · , k−1

is a circular L-colouring f with f(p0) = t and f(pk) = t′.

Assume Theorem 9 holds for k. To prove that it also holds for Pk+1 =

(p0, p1, · · · , pk, pk+1), we apply the theorem to the path (p0, p1, · · · , pk) to

obtain the required sets X and Y , and then let Y ′ = Y + l(pk+1)− l(pk) =

{t+ l(pk+1)− l(pk) : t ∈ Y }. Then X, Y ′ are the required sets for statement

(2). Statement (1) is proved in the same way.

Now we are ready to prove Theorem 8. Assume Theorem 8 is not true.

Let n be the smallest integer for which there is a real number r > 2, a

(2, r)-circular consecutive colour-list assignment L of G, such that G is not

circular L-colourable. We shall derive some properties of the list assignment

L that eventually lead to a contradiction.

It is known [5] that we only need to consider those r with 2 6 r < 4. As

θ2,2,2 = K2,3, we know that θ2,2,2 is circular consecutive 2-choosable (see next

section for a proof showing that K2,n are circular consecutive 2-choosable).

In the following, we assume that 2 6 r < 4 and n > 2.

If r 6 2 + 2/n, then L(x1) ∩ L(x3) ∩ · · · ∩ L(x2n+1) 6= ∅. Let t ∈

L(x1) ∩ L(x3) ∩ · · ·L(x2n+1). Let f(x2j+1) = t for j = 0, 1, · · · , n. For

12



w ∈ {u, v, x2, x4, · · · , x2n}, let f(w) be any colour from the nonempty set

L(w) − (t− 1, t+ 1)r. Then f is an L-colouring of G. In the following, we

assume that r > 2 + 2/n.

Lemma 12. For any j ∈ {2, 3, · · · , 2n− 1}, l(xj) and l(xj+1) are adjacent,

i.e., |l(xj) − l(xj+1)|r > 1.

Proof. Assume to the contrary that there exists an index j ∈ {2, 3, · · · , 2n−

1} such that |l(xj) − l(xj+1)|r < 1. Delete two vertices xj, xj+1 and add

an edge xj−1xj+2. The resulting graph G′ is θ2,2,2(n−1). By the minimality

of G, there exists a circular L-colouring f for G′. We shall extend f to a

circular L-colouring of G, by finding appropriate colours for xj and xj+1.

Let a = f(xj−1) and b = f(xj+2). If b ∈ L(xj), then let f(xj) = b and

let f(xj+1) be any colour from the non-empty set L(xj+1)− (b− 1, b+ 1)r.

Then f is a circular L-colouring of G. Thus we may assume that b 6∈ L(xj).

Similarly, we may assume that a 6∈ L(xj+1).

Since r < 4, either a + 1 ∈ L(xj) or a − 1 ∈ L(xj). By symmetry, we

may assume that a+ 1 ∈ L(xj). Similarly, either b+ 1 ∈ L(xj+1) or b− 1 ∈

L(xj+1). If b+1 ∈ L(xj+1), then let f(xj) = a+1 and f(xj+1) = b+1. Then

f is a circular L-colouring of G. Thus we may assume that b+ 1 /∈ L(xj+1)

and hence b−1 ∈ L(xj+1). Moreover, we may also assume that a−1 /∈ L(xj),

for otherwise, by letting f(xj) = a − 1 and f(xj+1) = b − 1 we obtain a

circular L-colouring of G. Let f(xj) = l(xj) + 2 and f(xj+1) = l(xj) + 1.

We shall show that f is a circular L-colouring of G.

Since a + 1 ∈ L(xj) and a − 1 /∈ L(xj), it follows that [a − 1, a]r ⊆

[l(xj)+2, a]r and [a, a+1]r ⊆ [a, l(xj)+2]r. Hence [a− (l(xj)+2)]r > 1 and

[l(xj)+2−a]r > 1. I.e., |f(xj)−f(xj−1)|r > 1. Since |l(xj)− l(xj+1)|r < 1,

it follows that l(xj) + 1 ∈ L(xj+1). I.e., f(xj+1) ∈ L(xj+1). By definition,

|f(xj)− f(xj+1)|r = 1. Since b /∈ L(xj), we have |b− (l(xj) + 1)|r > 1. I.e.,

|f(xj+1)−f(xj+2)|r > 1. This proves that f is indeed a circular L-colouring

of G.

Let l(x1) = a, l(x2n+1) = b, l(u) = c and l(v) = d. Without loss of

generality, we may assume that

c ∈ L(v) = [d, d+ 2]r.

Lemma 13. Under the above assumption, we have d /∈ [c, c+ 2]r.

13



Proof. Assume to the contrary that c ∈ [d, d+ 2]r and d ∈ [c, c+ 2]r. By

our assumption, r > 2 + 2/n. By Theorem 9, there is a colour t ∈ L(x2)

such that for any t′ ∈ L(x2n), there is a circular L-colouring f of the path

(x2, x3, · · · , x2n) with f(x2) = t and f(x2n) = t′.

We construct a circular L-colouring c of G as follows: Let c(x2) = t,

and let c(x1) ∈ L(x1) be any colour adjacent to t. Since c ∈ [d, d+ 2]r and

d ∈ [c, c+ 2]r, we have

[c, c+ 2]r ∩ [d, d+ 2]r = [c, d+ 2]r ∪ [d, c+ 2]r.

As N ([c, d+2]r) = [c+1, d+1]r and N ([d, c+2]r) = [d+1, c+1]r, it implies

that

N ([c, d+ 2]r ∪ [d, c+ 2]r) = S(r).

In particular, c(x1) ∈ N ([c, c+2]r∩ [d, d+2]r). Let s ∈ [c, c+2]r∩ [d, d+2]r

be a colour adjacent to t and let t∗ ∈ L(x2n+1) be any colour adjacent to s.

Let c(u) = c(v) = s and let c(x2n+1) = t∗. Let t′ ∈ L(x2n) be any colour

adjacent to t∗. By the previous paragraph, c can be extended to a circular

L-colouring of the path (x2, x3, · · · , x2n).

Lemma 14. N ([c, d+ 2]r) ∪ (N (c+ 2) ∩N (d)) = S(r).

Proof. By definition, N ([c, d+ 2]r) = [c+ 1, d+ 1]r. Since d /∈ [c, c+ 2]r, we

have N (c+ 2) ∩N (d) = [c+ 3, c+ 1]r ∩ [d+ 1, d− 1]r = [d+ 1, c+ 1]r.

Proof of Theorem 8 Assume first that b /∈ (c + 1, d− 1)r. By Theorem

9, there is a colour t ∈ L(x1) such that for any t′ ∈ L(x2n+1), there is

a circular L-colouring f of the path (x1, x2, x3, · · · , x2n+1) with f(x1) = t

and f(x2n+1) = t′. We construct a circular L-colouring c of G as follows:

Let c(x1) = t. If [c, d + 2]r ∩ N (t) 6= ∅ then let c(u) = c(v) = s for

some s ∈ [c, d + 2]r ∩ N (t), let c(x2n+1) = t′, where t′ ∈ L(x2n+1) is any

colour adjacent to s. By the choice of t, c can be extended to a circular

L-colouring of the path (x1, x2, x3, · · · , x2n+1). If [c, d+2]r∩N (t) = ∅, then

t /∈ N ([c, d+ 2]r). By Lemma 14, t is adjacent to both c+ 2 and d. In this

case, let c(u) = c + 2, c(v) = d. Since b /∈ (c + 1, d − 1)r, it follows that

[b, b+ 2]r ∩ [d+ 1, c+ 1]r 6= ∅. Let t′ ∈ [b, b+ 2]r ∩ [d+ 1, c+ 1]r. Then t′ is

adjacent to both c+ 2 and d. Let c(x2n+1) = t′. By the choice of t, c can

be extended to a circular L-colouring of the path (x1, x2, x3, · · · , x2n+1).

Assume next that b ∈ (c+1, d−1)r. Then [b, b+2]r∩ (d+1, c+1)r = ∅.

This implies that for any t ∈ [b, b+ 2]r, N (t) ∩ [c, d+ 2]r 6= ∅. By Theorem
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9, there is a colour t ∈ L(x2n+1) such that for any t′ ∈ L(x1), there is a

circular L-colouring f of the path (x1, x2, x3, · · · , x2n) with f(x1) = t′ and

f(x2n+1) = t.

Let s ∈ [c, d+ 2]r ∩ N (t) be a colour adjacent to t and let t′ ∈ L(x1)

be any colour adjacent to s. Let c(u) = c(v) = s and let c(x1) = t′ and

c(x2n+1) = t. Then c can be extended to a circular L-colouring of the path

(x1, x2, x3, · · · , x2n+1). This completes the proof of Theorem 8. �

It is known [5] that if G contains a cycle, then chcc(G) > 2. If G is an

n-vertex tree, then chcc(G) = 2(1− 1
n
). Hence, for a connected 2-choosable

graph G on n vertices, to determine the exact value of chcc(G) it suffices to

determine whether G contains a cycle or not. That is, if G contains a cycle

then chcc(G) = 2; otherwise, chcc(G) = 2− 2
n
. In conclusion, for 2-choosable

graphs G, chcc(G) can be determined in linear time.

4 Cycles

Although every 2-choosable graph is circular consecutive 2-choosable, the

converse is not true. For example, by Theorem 1, K2,n is not 2-choosable

for n > 4. However, it is easy to show that K2,n is circular consecutive

2-choosable: We only need to consider r with 2 6 r < 4. Denote V (K2,n) =

{u, v} ∪ {x1, x2, . . . , xn}. Let L be a (2, r)-circular consecutive colour-list

assignment for K2,n. Then L(u) ∩ L(v) 6= ∅. Let f(u) = f(v) = t ∈

L(u) ∩ L(v), and let f(xi) ∈ L(xi) \ (t − 1, t + 1)r. Then f is a circular

L-colouring of K2,n.

The following is an open problem:

Question 1. Which are the graphs G with chcc(G) 6 2?

As discussed in the previous paragraph, to investigate Question 1 it suffices

to consider graphs without vertices of degree 1. So far, there are only two

families of graphs that are known to have a positive answer to Question 1.

Besides K2,n discussed in the previous paragraph, cycles is the other known

family of such graphs, which we prove in the next result.

Theorem 15. For any integer n > 3, chcc(Cn) = 2.

The rest of this section is devoted to the proof of Theorem 15. It is

proved in [5] that for any n > 3, chcc(Cn) > 2, and if n is even or n = 3

then the equality holds. To prove Theorem 15, it suffices to show that for
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any k > 2, for any r > 2 + 1/k, chr
cc(C2k+1) 6 2. To this end, the following

lemma is established. Let L be a 2-circular-consecutive-list assignment for

Cn with respect to r, where V (Cn) = {v0, v2, · · · , vn−1}, vi ∼ vi+1. We need

to find a circular L-colouring for Cn. Let L(vi) = [ai, ai + 2]r.

Lemma 16. If r > χc(Cn−2) and chr
cc(Cn−2) 6 2, then chr

cc(Cn) 6 2.

Proof. Assume chr
cc(Cn−2) 6 2 for some r > χc(Cn−2). If |ai − ai+1|r > 1

for all i, then f(vi) = ai, 0 6 i 6 n − 1, is a circular L-colouring for Cn.

Hence, assume without loss of generality, an−1 = 0 and a0 = ε for some

0 6 ε < 1. Let G′ be an (n− 2)-cycle with the vertex set {v1, v2, · · · , vn−2}

where v1vn−2, vivi+1 ∈ E(G′) for i = 1, 2, · · · , n− 3. Restricting L to V (G′)

is indeed a 2-circular-consecutive-list assignment for Cn−2 with respect to r.

Since chr
cc(Cn−2) 6 2, there exists a circular L-colouring f for G′. It suffices

to extend f to Cn by finding f(v0) ∈ L(v0) and f(vn−1) ∈ L(vn−1) such that

|f(v0) − f(vn−1)|r > 1, |f(v0) − f(v1)|r > 1 and |f(vn−2) − f(vn−1)|r > 1.

Suppose f(vn−2) ∈ L(v0). Let f(v0) = f(vn−2). Since L(vn−1) has

length 2, there exists j ∈ L(vn−1) with |j − f(vn−2)|r > 1. Let f(vn−1) = j.

Then f is a circular L-colouring for Cn. Similarly, the result follows if

f(v1) ∈ L(vn−1).

It remains to consider that f(vn−2) /∈ L(v0) and f(v1) /∈ L(vn−1). Denote

x1 = f(v1) + 1, x2 = f(v1) − 1, y1 = f(vn−2) + 1 and y2 = f(vn−2) − 1.

Then |xi − yi|r > 1 for i = 1, 2. If x1, x2 /∈ L(v0), the result follows by

letting f(v0) = ε and f(vn−1) = 1+ε. Similarly, it holds if y1, y2 /∈ L(vn−1).

If x1 ∈ L(v0) and y1 ∈ L(vn−1), we let f(v0) = x1 and f(vn−1) = y1. By

symmetry, it remains to consider that x1 ∈ L(v0), y1 /∈ L(vn−1), x2 /∈ L(v0)

and y2 ∈ L(vn−1). For this case, let f(v0) = 2 and f(vn−1) = 1. It is

straightforward to check that each f defined above is a circular L-colouring

for Cn. We leave the details to the readers. This completes the proof of

Lemma 16.

It is known [5] that for r > 3, chr
cc(C3) = 2. To complete the proof of

Theorem 15, by Lemma 16, it remains to show that if n = 2k + 1 > 5 and

2 + 1
k

6 r < 2 + 1
k−1 , then chr

cc(Cn) 6 2. We prove this result in Lemma

18, below. To provide the reader with a better intuition on the seemingly

complicated proof of Lemma 18, we shall prove in Lemma 17 a special case

of this result. Indeed, the main idea of the proof of Lemma 18 stems from

the proof of Lemma 17.
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Lemma 17. If r = χc(Cn), then chr
cc(Cn) 6 2.

Proof. Assume n = 2k + 1 and r = 2 + 1
k
. Let z = r

n
= 1

k
. Without loss

of generality, assume L(v0) = [0, 2]r. For v ∈ Cn, let L(v) = {j : jz ∈

L(v)}. Then L(v0) = {0, 1, . . . , n − 1}. For each other vertex v, L(v) is

a set of circular consecutive integers, modulo n, from {0, 1, 2, . . . , n − 1}.

Furthermore, there is at most one i, 0 6 i 6 n − 1, such that i /∈ L(v). For

i = 0, 1, . . . , n− 1, let

φi(vj) = (i+ jk) mod n.

Then for each i, φi is a (2k+ 1, k)-colouring of Cn. For each vertex v, there

is at most one i such that φi(v) /∈ L(v), while for v0, φi(v0) ∈ L(v0) for all

i. Thus there is an index i∗ such that φi∗(v) ∈ L(v) for all vertices v of Cn.

Letting f(v) = φi∗(v)z, we obtain a circular L-colouring for Cn.

Lemma 18. If 2 + 1
k

6 r < 2 + 1
k−1 , then chr

cc(Cn) 6 2.

Proof. Let z = r
n
. In the case r = 2k+1

k
, the colours used to colour the

vertices of Cn are restricted to the set {iz : i = 0, 1, . . . , n− 1}. For 2 + 1
k <

r < 2 + 1
k−1 , instead of restricting to this colour set, we restrict to colours

in ∪n−1
i=0 Xi, where

Xi = [iz − x, iz]r,

are intervals of length x ending at iz. Throughout the proof, when we

encounter a negative real number, say w, on S(r), we regard it as r +w on

S(r). For instance, X0 = [r−x, 0]r. We choose the length x to be (n−1)z−2,

which is the smallest real number such that every interval of S(r) of length

2 intersects at least n − 1 of the intervals Xi (i = 0, 1, . . . , n− 1). Figure 1

illustrates the intervals Xi on S(r). Note that when r = 2 + 1
k , then x = 0

and each Xi is a single point of S(r), Xi = {i/k}.

For each vertex v, denote L(v) = {j : Xj∩L(v) 6= ∅}. By our assumption,

L(v0) = [0, 2]r. Thus L(v0) = {0, 1, 2, · · · , n− 1}. For each v, L(v) contains

at least n − 1 of the integers 0, 1, . . . , n− 1. Denote the missing number of

L(v), if exists, by m(v); otherwise m(v) = ∞. Observe,

m(v) =







i, if L(v) = {i+ 1, i+ 2, · · · , i− 1} (mod n);

∞, if L(v) = [jz, jz+ 2]r for some j ∈ {0, 1, · · · , n− 1}.
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Figure 1: Locations of the intervals Xi’s on S(r), in the proof of Lemma 18

Let φi be defined as in the proof of Lemma 17. By the proof of Lemma

17, we can find an index i ∈ {0, 1, . . . , n − 1} such that φi(v) ∈ L(v) for

all vertices v of Cn. To obtain a circular L-colouring f of Cn, we may let

f(v) be a colour from the set Xφi(v) ∩ L(v). However, for some choices of

the colours for f(v) from Xφi(v) ∩L(v), the resulting mapping f may not be

a circular r-colouring of Cn. For example, if φi(vj) = a, φi(vj+1) = a + k,

Xa ∩L(vj) ⊆ (az−x/2, az]r and Xa+k ∩L(vj+1) ⊆ [(a+ k)z−x, (a+ k)z−

x/2)r, then straightforward calculation shows that for any s ∈ Xa ∩ L(vj)

and s′ ∈ Xa+k ∩ L(vj+1), we have |s − s′|r < 1. On the other hand, by a

straightforward calculation, it can be verified that if s is the middle point

of Xa, i.e., s = az − 1
2x, then for any s′ ∈ Xa+k, one has |s− s′|r > 1.

Therefore, we need to take special care of the case when L(v) intersects

Xφi(v) but does not contain the middle point of Xφi(v). If m(v) = i for some

i = 0, 1, 2, · · · , n−1, then L(v) partly intersects Xi+1 and Xi−1. Let α(v) =

|L(v)∩Xi+1|r and β(v) = |L(v)∩Xi−1|r. If m(v) = ∞, let α(v) = β(v) = 0.

Referring to Figure 1, it is obvious that for any vertex v, α(v)+β(v) > x and

hence α(v) and β(v) cannot be both less than x/2, except when m(v) = ∞

in which α(v) = β(v) = 0.

For i = 0, 1, 2, · · · , n− 1, set

φi(vj) = (i+ jk) mod n;

ψi(vj) = (i− jk) mod n.

For each i = 0, 1, · · · , n− 1, we define a function hi : V (Cn) → X by
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hi(vj) =







φi(vj)z −
x
2 , if Ii,j = ∅ or ||Ii,j|| >

x
2 ;

aj, if Ii,j 6= ∅, ||Ii,j|| <
x
2 and aj ∈ Xφi(vj );

aj + 2, if Ii,j 6= ∅, ||Ii,j|| <
x
2 and aj + 2 ∈ Xφi(vj),

where Ii,j = Xφi(vj) ∩ L(vj) and ||Ii,j|| is the length of Ii,j.

Analogously, we define functions gi for 0 6 i 6 n− 1, by replacing φi(vj) by

ψi(vj) in the above definition of hi.

It suffices to show that hi or gi for some i is a circular L-colouring for

Cn. Note, the function hi or gi becomes invalid as a circular L-colouring

only if at least one of the following occurs:

(a) Ii,j = ∅ for some j (that is, m(vj) = φi(vj) or m(vj) = ψi(vj)).

(b) |hi(vj) − hi(vj+1)|r < 1 or |gi(vj)− gi(vj+1)|r < 1 for some j.

To deal with the situations in (a) and (b), we define two types of edges

on Cn, namely, saving and wasting edges. A directed edge (vt, vt′), where

t, t′ = 0, 1, · · · , n− 1 and t′ = t± 1, is called tight if at ∈ Xj, at′ + 2 ∈ Xj+k

for some j, and α(vt) + β(vt′) <
x
2 . An edge vtvt′ , t

′ = t± 1, on Cn is called

saving if |m(vt) −m(vt′)|n = k, and

wasting if (vt, vt′) or (vt′ , vt) is tight.

The sets of saving and wasting edges are denoted by S and W , respectively.

Note, S ∩W = ∅.

Consider (a). For each j = 1, 2, · · · , n− 1, L(vj) contains all except at

most one number from 0 to n−1, so vj would result in at most two functions,

say hi and gi′ , invalid. Precisely, this occurs when m(vj) = φi(vj) = ψi′(vj).

On the other hand, for each saving edge, say vtvt′ ∈ S, vt and vt′ together

would only make at most three functions invalid, instead of 4 by considering

vt and vt′ separately, because if m(vt) = φi(vt) = ψi′(vt) then m(vt′) =

m(vt) ± k which is equal to either φi(vt′) or ψi′(vt′), as n = 2k + 1. Hence,

by considering vertices vi, i = 1, 2, · · · , n − 1, and edges in S, we conclude

at most 2n− 2 − |S| functions of hi’s and gi’s are invalid.

Now consider (b). Notice that since kz − x
2 = 1, by definitions of hi

and gi, (b) occurs only when vjvj′ is a wasting edge. As each wasting edge

results in at most one more function invalid, together with (a) at most

2n−2−|S|+ |W | functions are invalid. As there are 2n functions to choose,
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we conclude that if |S| > |W | − 1 then there exists some i such that hi or gi

is a circular L-colouring for Cn.

It remains to consider the case that |S| < |W | − 1. We define a new

scaling on S(r) by rotating the previously old scaling clockwise (that is, in

the increasing order on S(r)) by x
2 . Notice, the position of L(v) on S(r)

for each v remains the same. Analogously, we define the corresponding

parameters and functions for the new scaling the same as in the old scaling,

and denote them accordingly by X∗
i , a∗i , m

∗(v), α∗(v), β∗(v), h∗i , g
∗
i , W

∗,

S∗, etc. For instance, we now have L(v0) = [x
2 , 2 + x

2 ]r (that is, a∗0 = x
2 ).

Claim. W ⊆ S∗ and W ∗ ⊆ S.

Proof. To prove W ⊆ S∗, let (vt, vt′) be a tight edge in the old scaling.

Then at ∈ Xj, at′ +2 ∈ Xj+k for some j, and α(vt)+β(vt′) <
x
2 . In the new

scaling, x
2 6 a∗t < x and L(vt′) ∩ X

∗
j+k = ∅. Hence, we get m∗(vt) = j − 1

and m∗(vt′) = j + k, implying |m∗(vt)−m∗(vt′)|n = k, so vtvt′ ∈ S∗.

Similarly one can prove that W ∗ ⊆ S. �

As before, among the 2n new functions h∗i ’s and g∗i ’s from the new scal-

ing, at most 2n − |S∗| + |W ∗| are invalid as circular L-colourings for Cn.

Because |S| < |W | − 1, by the Claim, we get 2n − |S∗| + |W ∗| 6 2n − 2.

This implies that there exists some h∗i or g∗i which is a circular L-colouring

for Cn. The proof of Lemma 18 is complete.

5 Generalized theta graphs

As observed earlier, K2,n is circular consecutive 2-choosable. Indeed, by

definition K2,n is the generalized theta graph θ2, 2, · · · , 2
︸ ︷︷ ︸

n

. Hence, to study

Question 1 it is natural to consider the following:

Question 2. For which positive integers k1, k2, · · · , kn, the generalized theta

graph θk1,k2,··· ,kn
is circular consecutive 2-choosable?

In this section, we provide partial answers to Question 2. First we con-

sider circular L-colourings of the graph θ2,2,2 for some special colour-list

assignment L.

Let the three paths of length 2 in θ2,2,2 be (x, z1, x
′), (x, z2, x

′) and

(x, z3, x
′). Assume 0 < ε 6 1/2. Let 0 < δ 6 (1 − ε)/3 and r = 4 − ε. Let
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l : V (θ2,2,2) → [0, 4− ε) be defined as

l(v) =







0, if v = x,

2 + 2δ, if v = x′,

r − 1 − δ, if v = z1,

r − 1 + 3δ + ε, if v = z2,

1 + δ, if v = z3,

Lemma 19. Let l : V (θ2,2,2) → [0, 4 − ε) be defined as above. Let L(v) =

(l(v), l(v)+2+δ)r for v ∈ θ2,2,2. If f is a circular L-colouring of θ2,2,2, then

f(x) ∈ (0, 4δ+ ε)r and f(x′) ∈ (r− δ, 3δ + ε)r.

Proof. Assume the lemma is not true and f is a circular L-colouring of θ2,2,2

for which f(x) 6∈ (0, 4δ+ ε)r or f(x′) 6∈ (r − δ, 3δ + ε)r.

First we consider the case that f(x) 6∈ (0, 4δ+ε)r. Then f(x) ∈ [4δ+ε, 2+

δ)r. (Refer to Figure 2 for the positions of the intervals L(x), L(x′), L(z1),

L(z2) and L(z3).)

 

0

1

2

3 )(xL

)'(xL

)(
1

zL
)(

2
zL

)(
3

zL

Figure 2: Locations of the intervals L(x), L(x′), L(z1), L(z2), L(z3), in the

proof of Lemma 19

Since L(z2) = (r − 1 + 3δ + ε, 1 + 4δ + ε)r, this forces f(z2) ∈ (r −

1 + 3δ + ε, f(x) − 1]r. As L(x′) = (2 + 2δ, 3δ + ε)r, we must have f(x′) ∈

(2+2δ, f(z2)−1]r. On the other hand, we have f(z3) ∈ [f(x)+1, f(x′)−1]r.
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The four colours f(x), f(z2), f(x′), f(z3) occur in the circle S(r) in this cyclic

order, and every two consecutive colours have distance at least 1. This is a

contradiction, because S(r) has length r = 4 − ε < 4.

If f(x′) 6∈ (r − δ, 3δ + ε)r , then f(x′) ∈ (2 + 2δ, r − δ]r. This forces

f(z1) ∈ [f(x′) + 1, 1)r, which in turn forces f(x) ∈ [f(z1) + 1, 2 + δ)r. As

f(z3) ∈ [f(x) + 1, f(x′) − 1]r the four colours f(x′), f(z1), f(x), f(z3) occur

in S(r) in this cyclic order, and every two consecutive colours have distance

at least 1, which leads to the same contradiction.

In the following, we use Lemma 19 to prove that θ2,2,2,n has circular con-

secutive choosability greater than 2, provided that n 6= 2, 4, 6, and θ2,2,2,2,n

has circular consecutive choosability greater than 2 if n 6= 2, 6.

Theorem 20. Suppose n > 0 is an integer. Then

(1) chcc(θ2,2,2,2n+1) > 2 + 1/(n+ 5).

(2) chcc(θ2,2,2,2n+8) > 2 + 2/(4n+ 21).

Proof. Let the graph θ2,2,2,k be obtained from the graph θ2,2,2, with vertices

labeled as in Lemma 19, by adding the path (x, y1, y2, · · · , yk−1, x
′).

First we show that chcc(θ2,2,2,2n+1) > 2 + 1/(n + 5) for any n > 0. It

suffices to show that for any 0 < ε 6 1/2, for r = 4 − ε and for δ =

(1 − ε)/(n + 5), there is a list assignment L which assigns to each vertex

v an open interval of length 2 + δ of S(r), for which there is no circular

L-colouring of θ2,2,2,2n+1.

Let l : V (θ2,2,2,2n+1) → [0, 4 − ε) be defined so that the restriction to

θ2,2,2 is the same as in Lemma 19, and

l(yj) =







r + (4 + t)δ + ε− 1, if j = 2t+ 1,

r − tδ, if j = 2t.

We shall show that there is no circular L-colouring of θ2,2,2,2n+1. Assume

to the contrary that there is a circular L-colouring f of θ2,2,2,2n+1. By

Lemma 19, f(x) ∈ (0, 4δ + ε)r and f(x′) ∈ (r− δ, 3δ + ε)r .

Since L(y1) = (r + 4δ + ε − 1, 1 + 5δ + ε)r and |f(x) − f(y1)|r > 1,

we conclude that f(y1) ∈ (1, 1 + 5δ + ε)r . Since L(y2) = (r − δ, 2)r and

|f(y1) − f(y2)|r > 1, we have f(y2) ∈ (r − δ, 5δ + ε)r. Inductively, one can
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show that

f(y2j+1) ∈ (1 − jδ, 1 + (j + 5)δ + ε)r

f(y2j) ∈ (r − jδ, (j + 4)δ + ε)r.

In particular, f(y2n) ∈ (r−nδ, (n+4)δ+ ε)r . As f(x′) ∈ (r− δ, 3δ+ ε)r and

(n+ 5)δ + ε < 1, we conclude that |f(x′) − f(y2n)|r < 1, in contrary to the

assumption that f is a circular L-colouring of θ2,2,2,2n+1. This completes

the proof of (1).

Next we prove that chcc(θ2,2,2,2n+8) > 2 + 2/(4n+ 21) for any n > 0.

Let ε = 2n+6
4n+21 , r = 4− ε and δ = 2

4n+21 . Let l : V (θ2,2,2,2n+8) → [0, 4− ε)

be defined so that the restriction of l to θ2,2,2 is as defined in Lemma 19 and

l(yj) =







j − 2 + (3 + j)δ + ε, if 1 6 j 6 7,

6 + (7 + t)δ + ε, if j = 2t > 8,

7 − (t− 3)δ, if j = 2t+ 1 > 9.

Now we shall prove that θ2,2,2,2n+8 has no circular L-colouring. Assume

to the contrary that f is a circular L-colouring of θ2,2,2,2n+8. By Lemma 19,

f(x) ∈ (0, 4δ+ ε)r and f(x′) ∈ (r − δ, 3δ + ε)r.

Similarly as in the proof of (1), we can prove by induction that for

j = 1, 2, · · · , 7,

f(yj) ∈ (j, j + (j + 4)δ + ε)r.

For j = 2t > 8,

f(yj) ∈ (8− (t− 4)δ, 8 + (t+ 8)δ + ε)r.

For j = 2t+ 1 > 9,

f(yj) ∈ (7− (t− 3)δ, 7 + (t+ 8)δ + ε)r.

In particular,

f(y2n+7) ∈ (7 − nδ, 7 + (n+ 11)δ + ε)r.

However, it is straightforward to verify that for any a ∈ (r − δ, 3δ + ε)r, for

any b ∈ (7 − nδ, 7 + (n+ 11)δ + ε)r, |a− b|r < 1. This is in contrary to our

assumption that f is a circular L-colouring of θ2,2,2,2n+8. This completes

the proof of (2).
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We do not know whether chcc(θ2,2,2,2n) > 2 for n = 2, 3. The next lemma

shows that chcc(θ2,2,2,2,4) > 2.

Theorem 21. chcc(θ2,2,2,2,4) > 2 + 1/8.

Proof. Similar to Lemma 19, we first consider circular L-colourings of θ2,2,2,2,

which is obtained from the graph θ2,2,2 in Lemma 19 by adding the path

(x, z4, x
′). Let l : V (θ2,2,2,2) → [0, 4− ε) be defined such that the restriction

of l to θ2,2,2,2\{z4} is the same as in Lemma 19, and let l(z4) = r−1+δ+ε/2.

Claim 1. If f is a circular L-colouring of θ2,2,2,2 then either

f(x) ∈ (0, 2δ+ ε/2)r, and f(x′) ∈ (−δ, 2δ + ε/2)r

or

f(x) ∈ (δ + ε/2, 4δ + ε)r, and f(x′) ∈ (δ + ε/2, 3δ + ε)r .

Proof. If the claim is not true, then by using Lemma 19, we conclude that

one of f(x), f(x′) lies in the interval (−δ, δ + ε/2]r and the other lies in the

interval [2δ+ ε/2, 4δ+ ε)r. Since z4 is adjacent to both x and x′, there is no

legal colour for z4 in the interval L(z4). This proves the claim.

Let l : V (θ2,2,2,2,4) → [0, 4− ε) be defined so that the restriction of l to

θ2,2,2,2 is as in Claim 1 and for j = 1, 2, 3, l(yj) = j − 2 + (3 + j)δ + ε. We

shall show that, for appropriate ε and δ, θ2,2,2,4 has no circular L-colouring.

Assume to the contrary that f is a circular L-colouring of θ2,2,2,2,4.

Let ε = 1/2 and let δ = 1/8. By Claim 1, we have two cases.

Case 1

f(x) ∈ (0, 2δ+ ε/2)r, and f(x′) ∈ (−δ, 2δ + ε/2)r.

By using the proof of Theorem 20, we can show that f(y3) ∈ (3, 3+7δ+

ε)r. Since ε = 1/2 and δ = 1/8, straightforward calculation shows that for

any a ∈ (−δ, 2δ + ε/2)r, for any b ∈ (3, 3 + 7δ + ε)r, we have |a− b|r < 1, in

contrary to our assumption that f is a circular L-colouring of θ2,2,2,2,4.

Case 2

f(x) ∈ (δ + ε/2, 4δ+ ε)r, and f(x′) ∈ (δ + ε/2, 3δ + ε)r.

Observe that, in comparison with Case 1, the possible colour of f(x) is

“shifted to the right” by a distance of δ + ε/2. By using the argument as in
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the proof of Theorem 20, we can show that f(y3) ∈ (3+δ+ ε/2, 3+7δ+ ε)r .

Again, straightforward calculation shows that for any a ∈ (δ+ ε/2, 3δ+ ε)r,

for any b ∈ (3+ δ+ ε/2, 3+7δ+ ε)r , we have |a− b|r < 1, in contrary to our

assumption that f is a circular L-colouring of θ2,2,2,2,4.

We have shown that many generalized theta graphs G have chcc(G) > 2.

A complete characterization of circular consecutive 2-choosable generalized

theta graphs remains open and is interesting for further research. The fol-

lowing is a weaker version of this problem and is also open:

Question 3. Is it true that for any positive integer k, θ2,2,2k+1 is circular

consecutive 2-choosable?
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