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Abstract

Let G be a graph. A circular distance two labeling with span k is
a function f : V(G) — {0,1,2,---,k — 1} such that: 1) 2 < |f(u) —
f)| € k—2if u and v are adjacent; and 2) f(u) # f(v) if u and v are of
distance two apart. We denote by A.(G) the smallest span of a circular
distance two labeling for G. Let A(G) be the maximum degree of G.
We prove, for any outerplanar graph G, A\.(G) = A(G) + 3, provided
A(G) > 15; and A\ (G) < A(G) + 4, provided A(G) > 11. Tt is also
shown that there exist outerplanar graphs G with A(G) = 2,3,4,5 for
which A\:(G) = A(G) + 4. Moreover, we prove that A.(G) < A(G) +5
for any triangulated outerplanar graph, and A\.(G) < A(G) + 7 for
any outerplanar graph. Immediate consequences of our results include
that A(G) < A(G) + 2 for any outerplanar graphs with A(G) > 15,
where A(G) is the minimum & of a k-L(2, 1)-labeling (or distance two
labeling) for G.
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1 Introduction

Distance two labeling (or L(2,1)-labeling) is motivated by the channel as-
signment problem (cf. [7]). The task is to assign one non-negative integral
channel to each of the given transmitters or stations so that interference is
avoided, and the span of all the channels used is minimized.

Suppose that we are dealing with two levels of interference — major and
minor. Major interference occurs between two close transmitters. To avoid
it, the difference of the channels assigned to such a pair of transmitters must
be at least 2. Minor interference occurs between two transmitters that share
a common close neighbor. To avoid it, the difference of the channels assigned
to such a pair of transmitters must be at least 1.

Let G = (V, E) be the graph where each vertex represents a transmitter,
and two vertices are adjacent if the corresponding transmitters are close.
The above channel assignment corresponds to an L(2, 1)-labeling of G, which
is defined to be a function f : V(G) — {0,1,2,---} such that the following
are satisfied, where dg(u,v) denotes the distance between v and v in G:

o |f(z) = f(y)| =2, ifdg(z,y) = 1; and

o 1f(5) = F@)] > 1, if dalz,y) =2
The span of f is defined as span(f) = maxgecy f(z) — mingey f(x). If
span(f) = k, then f is called a k-L(2, 1)-labeling. Without loss of generality,
for convenience, we assume that min,cy f(x) = 0, and hence max,cy f(z) =
k = span(f). The numbers 0,1,2,---,k are called colors (or labels). The
A-number of G, denoted by A(G), is the minimum % such that G admits a
k-L(2,1)-labeling.

A circular distance two labeling with span k (or a k-L.(2,1)-labeling)
of a graph G is a function, f : V(G) — {0,1,2,---,k — 1}, such that the

following are satisfied:



o |f(z) = f(W)lk =2, ifdg(z,y) = 1; and

o |f(z) = f(Wk =1, if dg(z,y) = 2,
where |z — ylk, the modular k circular difference between z,y, is defined as
|z —y|r = min{|z —y|, k — |z — y|}. The circular A\-number of G, denoted by
Ae(@), is the smallest k£ such that G admits a k-L.(2, 1)-labeling. Circular
distance two labeling and the values of A\.(G) for different families of graphs
have been studied in [10, 11, 12, 13].

By definition, every (k + 1)-L.(2, 1)-labeling is a k-L(2, 1)-labeling, and
every k-L(2,1)-labeling is a (k + 2)-L.(2, 1)-labeling. Therefore, we have

AMG) +1 < Ae(G) < NG) +2. (1.1)

The colors in circular distance two labeling are symmetric in the fol-
lowing sense. Let f be a k-L.(2,1)-labeling of G. Then, for any i €
{0,1,2,---,k — 1}, the function defined by f*(u) = f(u) —¢ (mod k) is
also a k-L.(2, 1)-labeling for G. The colors in distance two labeling does not
have this property. For instance, the star K, has A(G) = n + 1, and any
optimal L(2,1)-labeling must assign to the center vertex either 0 or n + 1.
This kind of asymmetry in colors sometimes causes difficulties in discussion.
In this article, we take advantage of the symmetry of colors in circular dis-
tance two labeling to explore the value of A.(G), which, by (1.1) gives good
bounds for the A-number of G.

The circular A-number of graphs is closely related to the circular chro-
matic number of edge weighted graphs, a notion introduced by Mohar [14].
An edge weighted graph with vertex set V is a pair 5: (V,A), where
A:V xV — RTU{0} is a weight assignment for the directed edges of
G. For every directed edge (u,v) EE, we write ay, = A(u,v). For a positive
real number p, denote by S, C R? the circle with perimeter p centered at
the origin of R?. For any z,y € Sy, let [(z,y) denote the length of the arc
from z to y on S in the clockwise direction. A circular p-coloring of Z* is
a functign c:V — S, such that I(c(u), c(v)) %auv for every directed edge
(u,v) €E. The circular chromatic number x.(G) of the graph G= (V, A) is

the infimum of all real numbers p for which there exists a circular p-coloring
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For any graph G (un-directed), we construct an edge weighted graph
62: (V,A) by: 1) For each uv € E(G), let ayy = ayy, = 2; 2) if v/ and o'
are distance two apart in G, then we add two directed edges (u', "), (v, u')
to 1_5 with @,y = ayy = 1; and 3) ay, = 0 for all other pairs (u,v). It is
not hard to verify that the following holds for any graph G [12]:

2
Ae(G) = [xe(G )]

Determining A(G) is an N P-complete problem, even restricted to special
classes of graphs, such as graphs with diameter 2 [6], planar graphs, bipartite
graphs, chordal graph, or split graphs (cf. [1]). Research on the parameter
A(G) has been concentrated on finding good upper bounds for A(G). Denote
by A(G) the maximum degree of G, or A when G is clear in the context. It
is easy to see that for any graph G, A\(G) > A+1 and \(G) > A+3. It was
shown in [6] that for any G, A(G) < A? +2A. This bound was improved to
AM(G) < A? + A by Chang and Kuo [2], where the proof actually shows that
Ae(G) < A%+ A+ 1. A still open conjecture [6] states that A(G) < A? for
any graph G. For special classes of graphs, better upper bounds are known.

Below we list some of the known results on A(G) for some families of graphs.

Graphs AG) Reference
Trees A+lorA+2 Chang and Kuo [2]
Chordal < 1(A+3)? Sakai [16]
Diameter two < A? Griggs and Yeh [6]
Planar < 2.5A +90 | Molloy and Salavatipour [15]
Outerplanar (OP) <A+38 Bodlaender et al. [1]
Triangulated OP <A+6 Bodlaender et al. [1]

A graph is outerplanar if it can be embedded in the plane in such a way
that all the vertices lie on the infinite face. We call such an embedding
outerplane graph. An outerplanar graph is triangulated if it can be drawn
as an outerplane graph such that each finite face is a triangle. In searching

for the A-number of outerplanar graphs, Bodlaender et al. [1] proposed:

Conjecture 1 For any outerplanar graph G, \(G) < A + 2.



Observe that, for any graph G,
Ae(G) > A+3.
The main result of this article is:
Theorem 1 For any outerplanar graph G with A > 15, A\.(G) = A + 3.

By (1.1), an immediate consequence of Theorem 1 is the confirmation of

Conjecture 1 for outerplanar graphs with large maximum degree.
Corollary 2 For any outerplanar graph G with A > 15, \(G) < A + 2.

For outerplanar graphs with smaller maximum degree, we prove the fol-

lowing two results:

Theorem 3 Suppose G is an outerplanar graph. Then A\.(G) < A(G) + 7.
Moreover, if G is triangulated, then A\.(G) < A(G) + 5.

Theorem 4 If G is an outerplanar graph and A(G) > 11, then A (G) <
A(G) + 4.

Combining Theorem 3 with (1.1), we are able to improve the bounds of the
A-number for outerplanar graphs obtained in [1].

Note that, the condition A(G) > 15 in Theorem 1 cannot be simply
removed. In the last section of this article, we demonstrate the existence of
outerplanar graphs G with A(G) = 2,3,4,5 and A\.(G) = A(G) + 4.

2 Structure of outerplanar graphs

Let G be an outerplanar graph. Then G can be transformed into a triangu-
lated outerplane graph G by adding some edges. We call G a triangulation
of G. There may exist many triangulations of G, however, we denote by G
an arbitrary but fixed triangulation.

Let G be a triangulated outerplane graph. We define a level function |
on V(G), by recursion, such that I(u) # I(v) if v ~ v. Initially: Choose



an edge e = ujuy on the infinite face and let I(u1) = 1, l[(ug) = 2; we call
e the root edge and w1, us the root vertices. Inductively: Let X = {v €
V(G) : l(v) is defined}. While X # V(G), choose a triangle (u,v,w) such
that v,w € X and u € V(G) — X. Assume [(v) > [(w) (since v ~ w, by
inductive hypothesis, I(v) # [(w)). Let l[(u) = I(v) + 1. The vertices w,v
are called the major parent and the minor parent of u, and are denoted by
w = f(u) and v = m(u), respectively. It is easy to verify that, at each step,
the subgraph G[X] of G induced by X is still a triangulated outerplane
graph. This implies that if, at some step, u € V(G) — X is contained in a
triangle (u,v,w) such that v,w € X, then the triangle is unique. Hence, for
any non-root vertex u, the functions I(u), m(u) and f(u) are well-defined.

The following lemma, follows from the definitions.

Lemma 5 If u is a non-root vertez, then f(u) € {m(m(u)), f(m(u))}. If
u' # u are two non-root vertices, then {f(u),m(u)} # {f(u'),m(u")}.

If v is a parent of u, then w is called a child of v. If v is the major
(respectively, minor) parent of u, then w is called a major (respectively,
minor) child of v. If m(u) = m(u'), then u and «’ are siblings. Note that a
vertex may have many children. However, the following lemma shows that
each vertex has at most one sibling and at most two children of the same

level.

Lemma 6 Suppose G is a triangulated outerplanar graph with level function
[. Let v be a vertex and v a positive integer. Then v has at most two children
w with [(u) —l(v) =i. In particular, v has at most two minor children and

at most one sibling.

Proof. Let W; = {z : z is a child of v with [(z) = I(v) + i}. We prove by
induction on ¢ that |W;| < 2. If u € Wy, then m(u) = v. If v is a root vertex,
then it follows from the definition that |W;| < 1. If v is a non-root vertex, by
Lemma 5, f(u) € {f(v), m(v)}. Hence, the parents of u are either {v, f(v)}

or {v,m(v)}. By Lemma 5, there is at most one vertex whose parents are



{v, f(v)} and at most one vertex whose parents are {v,m(v)}. Therefore
|[W1| < 2. Assume |Wy| < 2 for some k > 1. If u € Wy, then v = f(u)
and m(u) € W. Since [Wy| < 2, it follows from Lemma 5 that [Wj41| < 2.

If ' and wu are siblings, then u and u’ are both minor children of m(u) =
m(u'), of level I(m(u)) + 1. As m(u) has at most two children with level
[(m(u)) + 1, we conclude that each vertex has at most one sibling. [

If G is a non-triangulated outerplanar graph, then we define the level
function ! on a triangulation Gt of G, and view [ as a function on G.
Similarly, parents, children and siblings are defined according to [ in the
same manner. Note that, as G is non-triangulated, a vertex u may not be
adjacent to its parents.

Next, we define a lexicographic ordering < on V(G) by:

o If [(u) < I(u'), then v < o/. If I(u) = I(u) and f(u) < f(u'), then
u < u'. Ifl(u) =I1(u) and f(u) = f(u'), then v < o' if and only if

m(u) < m(u').

By Lemma 5, < is a linear ordering on V(G). Throughout this article,
we write V(G) as V(G) = {vi,v2, -+, vy}, where v; < v; if and only if i < j.
In particular, v; = uq,v9 = uo are the two root vertices.

Let t be an integer, 1 < ¢ < n. Denote V; = {v1,v9,---,v:}. Let w e V.
We denote the number of neighbors of w in V; by s[w, t], that is:

slw,t] = {v; 1 j <t,v; ~w}|.

Observe that, for any vertex w = vy of an outerplanar graph G, if f(w) =
v; and m(w) = vj, then i < j < b, s[w,i] < 1, and sjw, j|] = s[w,b] < 2.

Moreover, we have:

Lemma 7 Let G be an outerplanar graph and Gt a triangulation of G. Let
w € V(G). Suppose w ~ vy in Gr.

(1) If sfw,t] > 5, then w = f(v).

(2) If sjw,t] > 7, then f(m(v:)) = w.



(3) If sfw,t] > 9, then f(m(m(v))) = w.
(4) If m(v) = vy, then sfw,t] — s[w,t'] <2.

(5) If w = f(v;) = f(ve), and vy ~ vy for some l, then |s|w,t] —s[w,l]| < 2.

Proof. The neighbors of w in G, in the ordering <, are: First, the parents
of w; secondly, the minor children of w; and finally, the major children of
w. By Lemma 6, w has only two parents and at most two minor children.
Hence, if s[w,t] > 5, then v; must be a major child of w, i.e., w = f(v;). So
(1) holds.

The rest of the lemma can be proved similarly, and we omit the details.

3 Proofs of Theorems 3 and 4

Suppose G is an outerplanar graph with vertex set V' = {vj,v9,---,v,},
ordered as in Section 2. To prove Theorems 1, 3 and 4, it suffices to find a
k-L.(2,1)-labeling for G, by the corresponding desired value of k. We regard
the colors {0,1,2,---,k — 1} on a circular palette, and all calculations are
taken modulo k. Let C be a proper subset of colors on this color palette. A
segment of C is a maximal interval of consecutive colors of C, i.e., a set I of
colors of the form I = {j,5+1,---,l} such that I C C and j —1,[+1¢ C.
The colors between two consecutive segments is called a gap of C. As we
are working on a circular color palette (i.e. modulo k), the number of gaps
is the same as the number of segments.

Let C' be a proper subset of {0,1,2,---,k — 1}. A color j is called
attaching to C if 7 +1 or 7 — 1 belongs to C. A color j is called a filling
color of C if both j 4+ 1 and j — 1 belong to C. Denote by A(C) and F(C),

respectively, the set of attaching colors and the set of filling colors of C.

Proposition 8 Let C be a proper subset of {0,1,2,---,k—1} (mod k).

(1) If x € F(C) — C, then {x} is a (singleton) gap of C.



(2) If x € C — A(C), then {z} is a (singleton) segment of C.

For all the proofs of Theorems 1, 3 and 4, we define a sequential label-
ing for G, according to the ordering vy, ve,- -, v, (except for the proof of
Theorem 3 in which a slight modification is necessary).

Suppose that ¢ is a partial labeling for V;—1 (i.e., ¢ is an assignment of
colors to V41 which can be extended to a k-L(2,1)-labeling for G). For any
b > t, a color j is legal for vy, if for any uw € V;_1, the following hold:

o If u ~ vy, then j & {p(u), p(u) = 1}; and

o If d(u,vp) = 2, then j # ¢(u).

At each step, we extend ¢ from V;_; to V; by assigning a legal color to v;.
A color is forbidden for vy if it is not legal for v;. We denote by Forb(v;) the
set of forbidden colors for ;.

For u € V;_1, set

Cu,t) = {¢(u), p(u) + 1, ¢(u) = 1} U{g(vj) : j <05 ~ u}.

Lemma 9 Let G be an outerplanar graph. Suppose ¢ is a partial labeling
for Vi_y1. Then the following hold:

(1) Forb(vy) C C(m(vy),t) UC(f(vy),t).

(2) C(m(vy),t) S {p(m(v)), p(m(vy))£1, d(m(m(vy))), ¢(f (m(vr))), ¢()},

where x s a possible colored sibling of v;.

(3) If f(m(ve)) = f(vt), then the vertex x in (2) does not exist, and hence
|C(m(vr), t)] <5.

(4) [Forb(ve) — C(f (vr),8)] <5.
(5) If f(m(vy)) = f(v), then |[Forb(v;) — C(f(ve), )] < 4.
(6) If G is triangulated, then
C(m(ve),t) = C(f (ve), 1) S {p(m(vr)) £ 1, ()},

and |Forb(ve) — C(f(ve),t)| < 3, where © is a possible colored sibling

of vg.



(7) If G is triangulated and f(m(ve)) = f(ve), then |[Forb(ve)—C(f (ve),t)| <
2.

Proof. By the ordering <, the only possible colored neighbors of v; are
f(vy) and m(vy). Moreover, if u is a colored vertex for which dg(u,v;) = 2,
then u is adjacent to either f(v;) or m(v;). Therefore, (1) is true.

If v; ~ m(v¢) and 7 < ¢, then v; is either a parent of m(v;) or a sibling of
vg. Hence, (2) is true.

If f(m(vy)) = f(ve) and z is a sibling of vy, then f(z) = m(m(v;)) and
hence v; < z, i.e.,  is not colored yet. So, (3) holds.

Note that, since f(v;) is also a parent of m(v;), we have ¢(f(v;)) €
C(f (@), 1) O {p(m(m(@)), #(F(m()))}. By (1) and (2), [Clm(u), ) —
C(f(ve),t)| <5. This verifies (4).

If f(m(vy)) = f(ve), then (5) follows by (1 — 4).

If G is triangulated, then {¢(m(vy)), p(m(m(vy))), d(f(m(ve)))} C C(f (vp), ).
Hence, (6) follows by (1, 2). Moreover, if f(m(v:)) = f(v¢), then (7) follows
by (1 — 4, 6). [

Proof of Theorem 3) We first consider the case that G is triangulated.
By Lemma 9 (6), [C(m(v:), ) — C(f(tr), ) < 3. As |C(f(v),8)] < A +2,
by Lemma 9 (1), |Forb(vy)| < A+ 5. If we had A 4 6 colors, then we would
always had a legal color for v;. However, we are given only ¥k = A+ 5
colors. So our aim is to reduce the number of forbidden colors of v; by 1.
To accomplish this, we define a sequential coloring scheme such that the

following property R1 is satisfied, at each step.

R1. If ¢ > 3, then ¢(v;) is an attaching color of
either C(f(vy),t) or C(m(vy),t).

Note that, the coloring scheme is based upon a slight modification of the
ordering <: We follow the ordering <, except when we encounter a pair of
siblings, say « and y, then « and y are colored in an order depending on the

color of their common minor parent.
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Initially: Let ¢(v1) =0, ¢p(v2) = 2, ¢(vs) = 4, so R1 is true.

Inductively: Suppose that ¢ has colored V;_1 such that R1 is satisfied
at each step, and we want to color the vertex v;. Assume v; does not have
a sibling. By Lemma 9 (6), we have |Forb(v)| < |C(f(v),t)] +2 < A + 4.
As we are given A + 5 colors, there exists some j € A(Forb(v;)) — Forb(v).
Let ¢(v;) = j. Then R1 is satisfied.

Assume v; has a sibling 2. Then we first need to determine the order
that we color v; and z. Let m(x) = m(v;) = v; for some v; € V;_;. Assume
that f(z) = f(v;) and f(v;) = m(v;) (the other case, f(xr) = m(v;) and
f(v¢) = f(v;), can be proved similarly). By inductive hypothesis, ¢(v;) is
attaching to either C(m(v;),7) or C(f(v)), 7).

If ¢(v;) is attaching to C(m(v;),7), then we color x before v;, by a legal
color attaching to Forb(z). This can be done, because z has no colored
sibling and hence |Forb(z)| < A +4 (by Lemma 9 (6), and |C(f(v),t)] <
A +2). Next, we find a legal color for v;. Because m(v;) = f(v), and
¢(v;) is attaching to C'(m(v;), j), we conclude that at least one of ¢(v;) +1
and ¢(v;) — 1 is in C(f(v),t). By Lemma 9 (6), one has |C(m(vs),t) —
C(f(vy),t)] <2, and so |Forb(v)| < A + 4. Hence, there is a legal color for
vy that is attaching to Forb(v;), and R1 is satisfied.

If ¢(v;) is attaching to C(f(v;),7), then we label v; before . The dis-
cussion is the same as in the previous paragraph. This completes the proof
for the existence of a labeling with at most A + 5 colors for a triangulated
outerplanar graph.

The second part of Theorem 3 for outerplanar graphs can be proved

similarly, using (4), instead of (6), of Lemma 9. We omit the routineness. Il

Suppose ¢ is a partial labeling for V;. For any u € V;, set

[ C(u,t), if vy # wu,
Clu, 1] = { Clut) U {()}, if v ~u.

Observe, s[u,t] = |Clu, t]| — 3.

Proof of Theorem 4) Let G be an outerplanar graph with A > 11. Let
k = A+ 4. Similar to the proof of Theorem 3, we give a sequential labeling

11



scheme on the ordering V(G) = {v1,v2,- -+, v}, using colors from the set
{0,1,2,---,k — 1}. With fewer colors, we need to be more restrictive in
bounding the size of Forb(v;).

Suppose ¢ is a partial k-L.(2,1)-labeling for V;, where ¢t > 3. Let w =
f(vt), and let B be the number of segments in C[w,t]. Observe that

B < slw,t] + 1. (3.1)

We call ¢ a valid partial labeling for V; if all the following hold:

R1. 6 <5.
R2. If s[w,t] > 5, then ¢(v:) € Clw, t].
R3. If s[w,t] > 9, then ¢(v;) € A(Cw,t]) N Clw, t]

We shall prove that for any 1 < ¢ < n, there is a valid partial labeling
for V;.

Initially: Let ¢(v1) = 0, ¢(v2) = 2, and ¢(v3) = 4. Then R1 is true,
while R2, R3 are vacuous.

Inductively: Assume ¢ is a valid partial labeling for V;_;, t > 4. We
extend ¢ to Vi, by assigning a color to vy, so that ¢ is a valid partial labeling
for V;.

Assume s[w,t] < 4. Then |C(w,t)] <7 and |Forb(v)| < 12 (by Lemma
9 (1,4)). Let ¢p(vy) = j for some j & Forb(v;) (j exists because k = A +4 >
15). By (3.1), R1 holds. R2 and R3 are vacuous.

Assume s[w,t] > 5. We consider two cases.

‘Case 1. v A w. ‘ Then C(w,t) = Clw,t] no matter what legal color will

be assigned to v;. Moreover, we have

Forb(vy) € {p(m(v)), p(m(vy)) + 1, p(m(m(vy))), d(f (m(v))), ()},

where z is a possible already colored sibling of v;. So, |Forb(v;)| < 6. Let ¢
be the largest index such that ¢ < t and v, ~ w. Then s[w, ¢] = s[w,t] > 5

12



and C(w,t) = Clw,t] = Clw,q]. By Lemma 7 (1), f(vs) = w. So R1 holds
by inductive hypothesis for V,. Now, we need label v; with a legal color so
that R2 and R3 hold.

If 5 < s[w,t] <9, then |C(w,t)| > 8, so there exists some j € C(w,t) —
Forb(v;). Let ¢(v:) = 7. Then R2 holds, while R3 is vacuous.

If sjw,t] > 9, then |C(w,t)| = |Clw,q]| > 12. By inductive hypothesis
for R1 on Vg, Clw,q] = C(w,t) has at most 5 segments. By Prop. 8,
|C(w,t) — A(C(w,t))| < 4. Since |C(w,t)| = |Clw,t]| = s[w,t] +3 > 12,
we have |A(C(w,t)) N C(w,t)] > 8. As |Forb(v;)| < 6, there exists some
j € A(C(w,t)) N C(w,t) which is legal for v;. Let ¢(v;) = j. Then R2 and
R3 hold, since C(w,t) = Clw, t].

‘Case 2. vy~ w.‘ Then no matter what legal color is assigned to v;, we
have |C(w,t)| = |Clw,t]| = 1 = s[w,t] + 2, and ¢(v;) € Clw,t]. Thus, R2
holds always.

Assume s[w,t] = 5 or 6. Then |C(w,t)| = 7 or 8. By Lemma 9 (4),
|Forb(v:)| < 13. Because k > 15, there exists some color j ¢ Forb(v;). By

inductive hypothesis, C'(w,t) has at most 5 segments. If C(w,t) contains

less than 5 segments, then let ¢(v;) = 7. So, R1 holds, while R3 is vacuous.
Suppose C(w,t) contains exactly 5 segments (so 5 gaps). Since |C(w,t)| <
8 and k£ > 15, we conclude that there exists a gap with more than two
elements, so |A(C(w,t)) — C(w,t)| > 6. By Lemma 9 (4), there exists some
j € A(C(w,t)) — Forb(v;). Let ¢(vy) = j. Then RI holds, while R3 is
vacuous.

Assume s[w,t] > 7. Let vy = m(vy). By Lemma 7 (2, 4), f(vy) = w
and s[w,t'] > 5. By Lemma 9 (5), |[Forb(v;) — C(w,t)| < 4. Moreover,
by inductive hypothesis and R2, ¢(vy) € Clw,t'] C C(w,t). Therefore, we

conclude that
Forb(v) — C(w, ) € {(or) = 1, d(m(vy))}.

Assume s[w,t] = 7,8. Then |C(w,t)| =9, 10, and hence |Forb(v;)| < 13.
As k > 15, there exists some j ¢ Forb(v:). If C(w,t) contains less than
5 segments, let ¢p(vy) = 5. If C(w,t) has exactly 5 segments (so 5 gaps),
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then by Prop. 8 and k > 15, we have |A(C(w,t)) — C(w,t)| > 5. Thus,
there exists some j € A(C(w,t)) — Forb(v;), as |[Forb(v;) — C(w,t)| < 3. Let
¢(v¢) = 7. Then R1 holds, while R3 is vacuous.

Assume 9 < s[w,t] < A —1. Then s[w,t'] > 7 and |C(w,t)] < A +
1. By Lemma 7 (3), w = f(m(vy)). By inductive hypothesis and R2,
{$lor), dm(v))} C Clw, ). So,

Forb(v;) — C(w,t) C {¢(vy) £ 1}. (3.2)

Because |C(w,t)] < A+1, k= A+4 and ¢(vy) € C(w,t), we conclude
that A(C(w,t)) — C(w,t) € {¢(vy) £ 1}. Therefore, there exists a color
j € A(C(w,t)) — Forb(v;). Let ¢(vy) = j. Then R1 and R3 hold.

Assume s[w,t] = A > 11. Then s[w,t'] > 9. Similar to the above, (3.2)
holds. Moreover, by R3, ¢(vy) € A(C(w,t")) C A(C(w,t)), so one of ¢(vy )+
1 belongs to C(w,t). Hence, |Forb(v;) — C(w, t)| <1 and |Forb(v;)] < A+3
(because |C(w,t)| < A + 2). Therefore, there exists some j € A(C(w,t)) —
Forb(v;). Let ¢(v;) = j. Then R1 and R3 hold. [

4 Proof of Theorem 1 and Consequences

Similar to the previous section, we prove Theorem 1 by giving a sequential
coloring scheme based upon the ordering <. Since we have fewer colors, the
sequential coloring scheme is more restrictive. We use the same notations
as in the previous section. Let kK = A + 3, and assume ¢ is a partial k-
L.(2,1)-labeling for V;, where ¢ > 3. Let w = f(v), and let 8 be the
number of segments in Clw,t]. If w has degree A, then let u be its A-th
neighbor; otherwise u does not exist and we simply ignore the parts involving
u. Throughout the proof we call ¢ a wvalid partial labeling for V; if all the
following hold:

14



R1. 5 <6; and if w £ m(u) or s[w,t] <9, then 5 < 5.
R2. If s[w,t] > 5, then ¢(v:) € Clw, t].
R3. If s[w,t] > 11, then ¢(v;) € Clw,t] N A(Clw, t]).

R4. Assume w has degree A (i.e. u exists). If sfw,t] > 10
and vy < m(u), then there exists some j* € F(C[w,t]),
which is legal for m(u). Moreover, if w #£ m(u), then

¥ € Clw,t] N F(Clw,t]) and j* # ¢(w).

We prove that for any 3 <t < n, there is a valid partial labeling for V;.

Initially: Let ¢(v1) = 0, ¢(v2) = 2 and ¢p(v3) = 4. Then R1 is true,
while R2 - R4 are vacuous.

Inductively: Assume ¢ > 4, and ¢ is a valid partial labeling for V;_;.

If s[w,t] <4, then |C(w,t)| <7, and |Forb(v;)| < 12 (by Lemma 9 (4)).
Let ¢(vy) = j for some j & Forb(v;) (j exists because & = A + 3 > 18).
Then, R1 follows by (3.1), while R2 - R4 are vacuous.

Assume s[w,t] > 5. We consider two cases.

‘Case 1. v w.‘ Then C(w,t) = Clw,t] no matter what legal color is

assigned to v;. Let g be the largest index such that ¢ < t and v, ~ w.
Then s[w,q] = s[w,t] > 5 and Clw,t] = C(w,t) = Clw,q]. By Lemma 7
(1), w = f(vq), and hence by inductive hypothesis, C[w,v,] has at most 5
segments. So, R1 holds.

Because v; # w, the following follows by Lemma 9 (1, 2):

Forb(vy) € {p(m(v)), p(m(vy)) + 1, p(m(m(vy))), d(f (m(v))), d(x)},

where z is a possible already colored sibling of v;. (Note, ¢(f(v;)) might be
a forbidden color for vy, however, as f(v;) is a parent of m(v;), so ¢(f(vy))
is included in the set on the right-side above.) Hence, |Forb(v;)| < 6.

Assume 5 < s[w,t] < 9. Then |C(w,t)| = sfw,t] + 3 > 8. Hence,
|C'(w,t) — Forb(v;)| > 2. Let ¢(v;) = j for some j € C(w,t) — Forb(uv;).
Then R2 holds, while R3 and R4 are vacuous.
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Assume s[w, t] = s[w, q] > 10. If u exists and v; < m(u), then by induc-
tive hypothesis (applied to Cw,v,]), there exists some j* € F(Clw,q]) =
F(C(w,t)) which is legal for m(u). We need to find a legal color for v, so
that j* is kept legal for m(u).

If sfw,t] = 10, then |C(w,t)| = 13. As |Forb(v:)| < 6, there exists some
j € C(w,t) — (Forb(vy) U {j%,5" £1}) (note: if v does not exist, we regard
{j*,7* £ 1} = 0). Let ¢(vy) = j. Then, j* is still legal for m(u), and R2,
R4 hold (the “Moreover” part of R4 follows by inductive hypothesis and
Clw,q] = C|w,t]), while R3 is vacuous.

Assume s[w,t] > 11. Then |C(w,t)| > 14. By Lemma 7, f(m(m(v;))) =
f(m(v)) = w. By Lemma 9 (3), |Forb(v;)| < 5. By inductive hypothesis,
C(w,t) has at most 6 segments, and by definition, at most 5 of them are
singletons. By Prop. 8, we have |C(w,t) N A(C(w,t))| > 9, implying that

[ (C(w, 1) N A(C(w, 1)) = {5, 5" £ 1} > 6.

As |Forb(v:)| < 5, there exists some j € C(w,t) NA(C(w,t)) —{j*, 7"+ 1} —
Forb(v;). Let ¢(vy) = j if vy # m(u); and ¢(v;) = j* if vy = m(u). Then,
R2 - R4 hold, since Clw,t] = C(w,t) = Clw, g|.

‘ Case 2. v ~w. ‘ Then R2 holds, regardless what color is assigned to v.
It suffices to find a legal color for v; that satisfies R1, R3 and RA4.

Assume 5 < s[w,t] <9. Then, R3 and R4 are vacuous. Since s[w,t] =
|Clw,t]| — 3 = |C(w,t)| — 2, one has |C(w,t)| < 11. By Lemma 9 (4),
|Forb(v:)| < 16. By inductive hypothesis, C(w,t) has at most 5 segments.

If C'(w,t) has less than 5 segments, let ¢(v;) = j for some j ¢ Forb(v;), so
R1 holds. If C(w,t) has exactly 5 segments (so 5 gaps). Since |C(w,t)| < 11,
and k > 18, we conclude that there exists a gap with at least two elements,
so, |A(C(w,t)) — C(w,t)] > 6. By Lemma 9 (4), there exists some j €
A(C(w,t)) — Forb(v:). Let ¢(v;) = j. Then R1 holds.

Assume s[w, t] > 10. Let vy = m(vy) and vyr = m(vy). Then ¢',t" < t.
By Lemma 7, s[w,t'] > 8, s[w,t"] > 6 and w = f(vy) = f(vyr). By inductive
hypothesis and R2, we have {¢(vy ), p(vyr )} C C(w,t). Therefore, by Lemma
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9 (1,2, 3,5), we have:
Forb(v;) — C(w,t) C {¢(vy) £ 1}. (4.1)

Lemma 10 Let ¢ be a valid partial coloring for Vi_1. If vy ~ w, slw,t] >
10, and |C(w,t)| < 15, then A(C(w,t)) — Forb(v:) # 0.

Proof. Assume |C(w,t)| < 15. For any segment {7,7+1,---,j'} of C(w, ),
we have {j—1,5'4+1} C A(C(w,t))—C(w,t) (note, j—1 # j'+1 since k > 18).
If C(w,t) has more than one segment, then |A(C(w,t)) — C(w,t)| > 3. By
(4.1), A(C(w,t)) — Forb(v;) # 0.

Assume C'(w,t) has only one segment, say C(w,t) = {j, 7+ 1,---,j'}.
Then A(C(w,t)) —C(w,t) ={j —1,7'+1}. As ¢p(vy) € C(w,t) (see above),
it follows that {j — 1,5 + 1} # {¢(vy)) £1}. So, A(C(w,t)) — Forb(v;) # 0.

[

If u exists, then u = vy, m(u) = vy and m(vy ) = vy for some b’ < b' < b,
and s[w,b] = A > 15. By Lemma 7, s[w,b'] > 13, s[w,b”"] > 11, and
floy) = fvyr) = w.

Assume s[w, t] = 10. Then R3 is vacuous, sjw,t—1] <9 and |C(w,t)| =

12. We consider two sub-cases.

‘Sub-case A. s[w,t] =10 and, u does not exist or m(u) % w.‘ By Lemma
10, there exists some j € A(C(w,t)) — Forb(v;).
Let ¢(v;) = j. Then R1 holds by inductive hypothesis. If u does not

exists, then R4 is vacuous, and we are done.

Assume u exists and m(u) = vy # w. It suffices to verify R4, that is,
to find some j* € F(Clw,t]) N Clw,t] — {¢(w)} such that j* is legal for vy .
As s[w,vyr] > 11, so vy < vy (i.e. vy has not been colored yet). Because
vy % w, for 7% to be legal for vy, it suffices that 7* & {d(w), d(m(vyr))}.
Note, any segment of Cfw,t] has at most two ends, and all the colors in
the segment except the ends are in F'(Cfw, t]). Because Cfw, t] has at most
5 segments, and |Clw,t]| = 13, we have |C[w,t] N F(C|w,t])] > 3. Hence,
there exists some j* € Clw,t] N F(Clw,t]) — {$(w), p(m(vy))}, such that

*

g* is legal for m(u). So R4 is satisfied.
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‘Sub—case B. s[w,t] =10, u exists, and m(u) ~ w.‘ In contrast to Sub-
case A, we first fix j*, then label v; such that R1, R2 and R4 are satisfied.
Suppose C(w,t) contains a singleton gap {i}. That is, i € F(C(w,t)) —

C(w,t). Let 7* =i. We need to show there exists a legal color for v; so that
7* is kept legal for m(u). As |C(w,t)| = 12 and {j*} is a gap of C(w,t) (so
C(w,t) contains at least two segments), by (4.1) and an argument similar to
the proof of Lemma 10, there exists some j € A(C(w,t)) — Forb(vs) — {5*}.
Let ¢(v) = j. Then R1 holds by inductive hypothesis. Because s[w, b’] > 13
and s[w,t] = 10, by Lemma 7 (5), we have v; o vy. Hence j* is legal for
vy = m(u), and R4 holds.

Now, suppose that every gap in C(w,t) contains at least two elements.
Note, C'(w,t) contains at most 5 segments, as sfw,t — 1] < 9. Combining
(4.1) with the assumptions |C'(w,t)| = 12 and k£ > 18, we conclude that
there exists a gap {j,j+1,---,j+ i} of C(w,t) such that ¢ > 1, and j+ 1 is
legal for v;. Let j* = j and ¢(vy) = j + 1. Then, j* satisfies R4. Moreover,
Clw, t] contains at most 6 segments. So R1 holds. This completes the proof
for the case s[w,t] = 10.

Assume s{w,t] = 11,12, so |C(w,t)] = 13,14. Assume u exists and
m(u) ~ w. By inductive hypothesis of R4, there exists some {j*} €
F(Clw,t — 1]) which is legal for m(u). Then j* must be a singleton gap
of Clw,t —1] = C(w,t), since m(u) ~ w. This implies that C(w,t) contains

at least two gaps. We claim:
A(C(w, 1)) = C(w,t) = {p(vy) £ 1,57} # 0. (4.2)

If C(w,t) has more than two gaps, then |A(C(w,t)) — C(w,t)| > 4. There-
fore, (4.2) holds. If C(w,t) has exactly two gaps, then |A(C(w,t))—C(w,t)—
{7*}] = 2, since k > 18. Note, A(C(w,t)) — C(w,t) — {j*} # {P(vy) £ 1},
as ¢(vy) € C(w,t). So, (4.2) holds.

Let ¢(v;) = j for some j € A(C(w,t)) — C(w,t) —{¢(vy)) £1,7*}. This
justifies R1 and R3 (since ¢(v;) € Clw,t]). Moreover, since j & {j*,7* £ 1}
(as {j* £1} C C(w,t)), 5* is still a legal color for m(u). So, R4 holds.

Now, assume that u does not exist, or u exists but m(u) # w. As
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|C(w,t)| < 14, by Lemma 10, there exists some j € A(C(w,t)) — Forb(v;).
Let ¢(v;) = j. Then, R1 and R3 hold. If u does not exist, then R4 is
vacuous. If u exists but m(u) # w, then by inductive hypothesis of R4,
{j*,7* £1} C C(w,t). So j & {j*,7° £ 1}, and j* is still a legal color for
m(u). Hence, R4 holds.

Assume 13 < s[w,t] < A—1. Then v; # u. As s[w,t'] > 11, by inductive
hypothesis and R3, ¢(vy) € A(Clw,']) N Clw,t'] C A(C(w,t)) N C(w,t).
Combining this with (4.1), one has |Forb(v;) — C(w,t)| < 1.

Suppose vy < m(u). If sfw,t] < A — 2, then |C(w,t)|] < A. Because
k= A+ 3, |[Forb(v) — C(w,t)| <1 and j* € F(C(w,t)), we conclude that
there exists some j € A(C(w,t)) —Forb(v;) —{j*}. Let ¢(v;) = j. Then RI,
R3 (since ¢(vy) € Clw,t]) and R4 hold.

If sjw,t] = A —1, then m(u) # w (as vy < m(u)), and |C(w,t)] = A+ 1.
By Sub-case A and inductive hypothesis, {j*,j* + 1} C C(w, t). Therefore,
there exists some j € A(C(w,t)) — Forb(v;), as k = A+ 3. Let ¢(v) = j.
Then R1, R3 and R4 hold.

Suppose vy = m(u). Let ¢(v;) = j*. Then R1, R3 and R4 hold.

Suppose m(u) < vy and vy # u. Then s[w,t] = A -1, |C(w,t)] = A+1,
and j* € C(w,t). Because |Forb(v;) — C(w,t)| <1, |C(w,t)] = A+ 1, and
k = A+3, there exists some j € A(C(w,t)) —Forb(vg). Let ¢(v;) = j. Then
R1, R3 and R4 hold.

Assume s[w,t] = A > 15. Then, v; = u. By inductive hypothesis,
d(vy) = j* € F(C(w,t)) N C(w,t). By (4.1), one has Forb(v;) = C(w,1).
As |C(w,t)] = A +2 and k = A + 3, we conclude that there is a legal color
for v;. This completes the proof of the validity of the coloring scheme. W

The following corollary follows from (1.1) and Theorems 1, 3 and 4.

Corollary 11

A+2, if G is outerplanar with A(G) > 15;
A+3, if G is outerplanar with A(G) > 11;
A+6, if G is outerplanar;

A+4, if G is triangulated outerplanar.

AG) <
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For outerplanar graphs with small maximum degrees, the equality of

>

S

Theorem 1 does not always hold.

Gy G2

60
w
=

b 1

Gy

Figure 1: Graphs Gl, GQ,G3,G4

Theorem 12 Let G1,Gy,G3, Gy be the graphs as shown in Figure 1 above
(ignore the labels of vertices of G4 at the moment). Then A(G;) =i+ 1,
and )\C(GZ) = A(Gl) + 4.

Proof. The proofs for Gi,G2 and G3, and for A\.(G4) < A(G4) + 4 are
straightforward. It is more complicate and routine to verify that A.(G4) >
A(G4) + 3 = 8. One method to accomplish this is: 1) Prove that, by
considering several cases, the labels (see Figure 1) for the “middle” induced
subgraph H form a unique 8-L.(2,1)-labeling for H; then 2) show that this
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unique labeling cannot be extended to the vertices w and w’. We omit the

routineness. |

Theorem 12 indicates that a condition like A(G) > 15 is necessary for

Theorem 1. Indeed, the authors of this article suspect that the condition
might be replaced by A(G) > d for some 6 < d < 15. Finding the smallest

such integer d for Theorem 1 would be an interesting problem for further

research.
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Appendix: Proof of Theorem 12 (for the referees’
reference)

To prove A.(G4) > A + 3, we first consider the subgraph H depicted
in Figure 2. We show that A\.(H) = A + 3, and there is only one (up to
symmetry) optimal circular distance two labeling for H.

Let f be an optimal labeling for H, f : V(H) — {0,1,2,---,7}. For any
edge e = uwv € E(H), define the weight w(uv) to be the circular difference
between f(u) and f(v) modular 8, that is,

w(ww) = min{|f(u) = f(v)], 8 = [f(u) = f(v)[}.

Note that, for any e € E(H), we have 2 < w(e) < 4. Let ey, es, e3, e4 be the

edges as shown in Figure 2 (i).
Claim 1 There exists some j € {1,2,3,4}, such that w(e;) = 2.

Proof. Assume to the contrary that w(e;) = 3,4 for j = 1,2,3,4. Due to
the symmetry of the colors and the symmetric structure of H, without loss
of generality, we assume that f(v1) = 0, and f(u1) = 3 or 4. If f(uy) = 3,
referring to Figure 2 (i), the colors assigned to z and vy must be distinct,
and have circular difference at least 2 to both 0 and 3. The only possibility
is that {f(z), f(v2)} = {5,6}. This implies that {f(v4), f(usa)} = {2,4},
and hence w(es) = 2, contradicting the assumption. The argument for the
case f(uy) =4 is similar. [

Thus, without loss of generality, we assume f(v1) = 0 and f(u1) = 2.

As the neighbors of vy in H are in the set {vg,u1,z,u4,v4}, one has

{f(va), (), f(ua), f(ve)} = {3,4,5,6}.

Note that the circular difference between f(v4) and f(ug) must be at least

2. Hence, there are the following eight possible cases:
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It is a routine to verify that the coloring in Cases 1 - 7 cannot be extended
to the whole graph H. We show Cases 1 and 5, and leave the others to the

reader, as the arguments are similar.

[ u

2
e
Uy a
e1 €3
v oy I
X [V}
uf _
()
a b a b a
2 fy b o of
6 c 5/ ¢ 4 ¢
3 3
5
4 L [
0 d 4 d 0 d
5 € 6 e 6 X¢}

(i) (iii) (iv)
Figure 2: The subgraph H of G4 and some possible labelings

For Case 1, the colors of the vertices are shown in Figure 2 (ii). By
considering the neighbors of v, we conclude that {a,b,c} = {1,3,4}. This
is impossible, because f(v4) = 3, and the colors 3 and 4 cannot be assigned
to adjacent vertices.

For Case 5, the colors of the vertices are shown in Figure 2 (iii). By
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considering the neighbors of vy, we get {c,d, e} = {1,5,7}. Thisis impossible
as apparently none of the ¢, d or e could be 5.

Next, we show that Case 8 can only be extended to a unique coloring
for H. The colors of the vertices for Case 8 are shown in Figure 2 (iv). By
considering the neighbors of ve, we get {a,b,c} = {1,6,7}. By considering
the neighbors of v4, we conclude that {c,d,e} = {1,5,7}. But ¢ # 1, for
otherwise {a,b} = {6,7} which is impossible for adjacent vertices. Thus
¢ = 7. This implies that a =6, b=1,e =1, d =5, and f = 2, which are
shown in the center part of G4 in Figure 1.

Assume there is a labeling for G4 with span 8. Then this labeling must
be an extension of the labels as depicted in Figure 1. However, this is
impossible since it would imply that the colors for vertices w and w' must
be {0,1}, a contradiction. Therefore, we conclude that \.(G4) > A + 3.
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