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Owing to continuing touristic developments in Hurghada, Egypt, several coral reef
habitats have suffered major deterioration between 1987 and 2013, either by being
bleached or totally lost. Such alterations in coral reef habitats have been well observed
in their varying distributions using change detection analysis applied to a Landsat 5
image representing 1987, a Landsat 7 image representing 2000, and a Landsat 8 image
representing 2013. Different processing techniques were carried out over the three
images, including but not limited to rectification, masking, water column correction,
classification, and change detection statistics. The supervised classifications performed
over the three scenes show five significant marine-related classes, namely coral, sand
subtidal, sand intertidal, macro-algae, and seagrass, in different degrees of abundance.
The change detection statistics obtained from the classified scenes of 1987 and 2000
reveal a significant increase in the macro-algae and seagrass classes (93 and 47%,
respectively). However, major decreases of 41, 40, and 37% are observed in the sand
intertidal, coral, and sand subtidal classes, respectively. On the other hand, the change
detection statistics obtained from the classified scenes of 2000 and 2013 revealed
increases in sand subtidal and macro-algae classes by 14 and 19%, respectively, while
major decreases of 49%, 46% and 74% are observed in the sand intertidal, coral, and
seagrass classes, respectively.

1. Introduction

Coral reefs suffer major deterioration and degradation due to natural and man-made
impacts worldwide. Worst-case estimates of reef degradation predict that almost half of
the world’s reefs may be irrevocably lost in the next 30 years (Wilkinson 2000). Hence,
close monitoring is needed to save such vital components of our environment.
Traditionally, reef health has been estimated using expensive and tedious underwater
surveying techniques that, by definition, cannot cover large areas (PCRF 2002).
Remote-sensing technology serves as an important means of monitoring and surveying
large and remote areas of coral reefs distributed worldwide in a cost- and time-effective
manner (El-Raey et al. 1996; Kutser, Dekker, and Skirving 2003). However, it is not a
simple task because of the varying optical properties and spatial distributions of the reef
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communities and their subsequent assessment complexity. The most common sensors
suitable for coral reef identification and classification are SPOT High-Resolution Visible
(HRV), Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+), Operational Land Imager (OLI), IKONOS, Advanced
Airborne Hyperspectral Imaging System (AAHIS), and Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) (Atkinson et al. 2001; Hochberg and Atkinson 2003). The
classification accuracies obtained for the AVIRIS, AAHIS, IKONOS, Landsat ETM+ ,
and SPOT HRV sensors are reported as 98%, 98%, 64%, 58%, and 50%, respectively
(Hochberg and Atkinson 2003). A natural reef environment is an arrangement of coral,
algae, sand, and other biotic and abiotic components that are spatially heterogeneous on
scales of millimetres to tens of metres (Stoddart 1969). It has been found that coral reefs
generally exhibit a unique geomorphologic zonation pattern as a result of the interaction
between reef developmental processes and the oceanic physical environment (Stoddart
1969). Typical zones include the fore reef, reef crest, reef flat, back reef, and lagoon with
pinnacles (Vanderstraete, Goossens, and Ghabour 2004). Reef zone degradation is
observed when mass coral mortality occurs followed by a formation of an algal mat
growing on the coral skeletons (Done 1992). Such phase shifts that change community
structure may occur slowly or precipitously, depending on how favourable the conditions
are for algal growth (Done 1992). Optical sensing methods typically penetrate clear waters
to approximately 15–30 m depending on water quality. Yet, light penetration is wave-
length dependent, being greater over the blue spectrum (400 nm) than, for instance, the
red spectrum (600 nm) (Mumby et al. 2004). Reflectance of reef communities (coral,
algae, and sand) shows an increase in the visible range from 400 to 700 nm with a degree
of local minimum near 675 nm due to chlorophyll absorption (Hochberg and Atkinson
2003). However, sand is much brighter than coral and algae, which have nearly equivalent
spectra except for slight differences over the curvature covering the range 500–625 nm
(Hochberg and Atkinson 2003). Therefore, it is evident that spectral resolution is more
important than spatial resolution for discriminating between reef communities (Hochberg
and Atkinson 2003; Mumby et al. 1997). Therefore, several well-placed, narrow (10 nm)
spectral bands are necessary to detect subtle differences in reflectance between some reef
communities (e.g. seagrass vs. algal beds, coral vs. algae, brown algae vs. green algae)
(Hochberg and Atkinson 2003). However, ecosystem complexity and the degree of detail
addressed in a research question play a pivotal role in deciding resolution accuracy both
spatially and spectrally. For instance, higher spectral resolution is needed when analysing
changes in just the main groups of organisms (i.e. coral vs. alga), but higher spatial and
spectral resolutions are needed when measuring changes within the coral species com-
munities – which is not the scope of this paper.

Coral reefs in Egypt represent an attractive factor for tourism and national income.
Moreover, they provide a primary indicator for environmental balance and reflect different
environmental stressors. Limited research has been carried out for the Hurghada region,
giving the baseline information needed to assess and manage coral reef systems. In the
current research we used Landsat TM and ETM+ sensors, which showed potential as
important tools for researchers to map coral reefs (Ahmad and Neil 1994; Biña et al. 1978;
Smith, Rogers, and Reed 1975). A Landsat 7 ETM+ data set was used to classify and
identify the different bottom types occurring in the reefs offshore of Hurghada
(Vanderstraete, Goossens, and Ghabour 2004). Moufaddal (2005) performed multi-date
change analysis on a Landsat 5 TM image from 1984 and a Landsat 7 ETM+ image from
2000 to identify the impacts of human activities on coastal habitats (e.g. coral reef and
seagrass) over Hurghada. Furthermore, Vanderstraete, Goossens, and Ghabour (2006)
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examined changes in coral reef composition, including coral, macro-algae, seagrass, and
sand, using a Landsat 5 TM image from 1987 and a Landsat 7 ETM+ image from 2000
over the same area. However, these analyses did not provide change detection statistics to
quantify coral reef changes in Hurghada. This work therefore aims to investigate and shed
light on coral reef health in a trial to develop a more exhaustive foundation for present and
future coral reef scenarios, by highlighting possible causes or changes that have degraded
coral reefs for the last two decades as shown by our change detection analysis of scenes
from 1987, 2000, and 2013. The more recent data used in this analysis were obtained by
incorporating observations from the newly launched Landsat 8, which helped us over-
come problems associated with data from Landsat 7 in regard to our 2000 image.

2. Study area

The Red Sea supports some of the world’s most significant coral reefs and other related
marine resources due to its globally distinct oceanographic and geologic evolution. It is
completely surrounded by deserts, and hence has almost no water input from rivers.
Therefore, the region exhibits very stable physical characteristics such as salinity, tem-
perature, and water quality (Edwards 1987). However, since the 1960s, human interfer-
ence with the natural environment has steadily increased, leading to negative impacts on
the health and status of these coral reefs (Pilcher and Alsuhaibany 2000). The situation
becomes especially worrisome in the northwestern part of the Red Sea, where major
threats are dominant. These threats include the booming tourism industry and urban
coastal development projects, mainly established for tourist accommodation and in sup-
port of the Egyptian relocation policy (Wilson 1998). Key habitats and animal life that
require attention are coral reefs, seagrass beds and mangroves, sponges, cnidarians,
molluscs, echinoderms, worms, tunicates, reef fish, sea turtles, sea birds, and marine
mammals. Our analysis considered the coral reefs near Hurghada, Egypt (27° 14′ N, 33°
54′ E), situated in the northern part of the Red Sea (Figure 1). Previous research has
targeted the same region, where field measurements were taken into consideration
(Vanderstraete, Goossens, and Ghabour 2004). This area covers about 150,000 ha and
has an altitude ranging from 0 m to mountains at 300 m above sea level. Hurghada is
characterized by a warm temperature throughout the year and a dry desert climate with a
steady breeze. It suffers from very hot summers, with temperatures between 26 and 34°C;
however, during winter time, the temperature falls to 20–25°C and water temperature
reaches 20–22°C. Hurghada exhibits a wide variety of coral reef types with a structural
complexity unmatched on earth, and their diversity is greater than anywhere else in the
Indian Ocean (PERSGA 2004).

3. Data used

Three images, from Landsat-5 TM, Landsat-7 ETM+, and Landsat-8 OLI with 30 m
spatial resolution were used in the change detection analysis, over a 26-year period. The
1987 image, which represents TM, was acquired on 14 August 1987; the 2000 image,
which represents ETM+, was acquired on 10 September 2000; and the 2013 image, which
represents OLI, was acquired on 20 July 2013. All scenes were obtained from path/row
number 174/41, are cloud-free, and were projected to UTM 36 zone at reference datum
WGS 84. The image analysis and processing for all images were carried out using ENVI
and ERDAS IMAGINE.
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4. Methodology

4.1. Image preprocessing

Three images were preprocessed prior to the classification and change detection analysis.
The visible bands (0.4–0.7 µm) were used for the analysis due to lower water column
absorption at these wavelengths. Moreover, these bands have spectral ranges that help to
identify the water–land interface. Image rectification was first applied to the 1987 and
2013 scenes using the 2000 scene, with the UTM 36 zone projected as a base image.
Around 15 ground control points (GCPs) were selected interactively from both sources
and reference images. The root mean square (RMS) error was minimized to 0.4 pixels
while the rotation, scaling, and translation (RST) method was used with nearest-neighbour
resampling. The water body was then separated from the coral reef ecosystem using
masks. This was carried out because the water body and coral reef have similar spectral
reflectance, which may lead to misclassification in water/coral areas. Moreover, no
significant reflection of seabed is noticed in deep water, as discussed by Vanderstraete,
Goossens, and Ghabour (2004). The different stages used through the masking process are
shown in Figure 2 and are summarized as follows.

● Subsetting: An area of interest (AOI) window is highlighted over the Hurghada
region and separated from three scenes.

● Classification: An unsupervised classification was performed to the subset image to
create a thematic raster layer using an ISODATA clustering method in which the
minimum spectral distance formula is used for 150 iterations with a convergence
threshold accuracy of 0.99 to form clusters.

● Recoding: Each value generated from the unsupervised classification is assigned to
a symbol or code to discriminate pixels related to sea (code W), coral (code C), or

Figure 1. Base map showing the location of Hurghada.
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land (code L). Masked coral/land scenes were obtained by assigning C and L to 1
and W to 0. Moreover, masked coral scenes were obtained by assigning C to 1 and
L and W to 0.

● Multiplying: The final step, shown in Figure 3, aims to process a function that uses
codes with a value of 1, and multiplying this by the subsetted false-colour compo-
site image to generate the final masked image Water column correction is then
applied to these final masked images.

4.2. Water column correction

It is evident that depth-invariant processing of digital spectral data improves the accuracy
of marine habitat mapping using multispectral classification; hence, water column correc-
tion is most appropriate for imagery with several water-penetrating spectral bands (e.g.
Landsat TM) (Lyzenga 1981; Maritorena 1996). Therefore, depth-invariant processing
was performed in this study to assess whether any significant changes in habitats had
occurred during the 26 year period. Critical to such assessment would be a clear measure
of how accurate the classifications might be, based on end member selected data. This
would demonstrate the level of confusion (misclassification) between the macro-algae,
seagrass, and coral classes, which are spectrally similar. Also, this would provide infor-
mation on the differences due to the inherent limitations of the imagery. When light
penetrates water its intensity decreases exponentially with increasing depth. This process
is known as attenuation, which is wavelength dependent, and exerts a profound effect on
remotely sensed data of aquatic environments (Green et al. 2000). In the visible region,
the red part of the spectrum attenuates more rapidly than the shorter-wavelength blue part.

Corrected Subset image

Separated Water/Land/Coral

Coral/Land MaskCoral Mask

Masked coral

image

Water column correction

Masked output images

Masked land

image

Masked coral/land

image

Multiply False color composite image

Land Mask

Subset image

Input scene

Subsetting

Atmospheric correction

Unsupervised classification

Recoding

Figure 2. Masking, atmospheric, and water column correction processes for original satellite
images for 1987, 2000, and 2013.
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As depth increases, the separability of habitat spectra declines (Green et al. 2000). The
spectral radiances recorded by a sensor are therefore dependent on both the reflectance of
the substrata and depth. These two influences on the signal can create considerable
confusion when attempting to use visual inspection or multispectral classification to
map habitats. Since most marine habitat-mapping exercises are only concerned with
mapping benthic features, it is useful to remove the confounding influence of variable
water depth. This method is applicable to clear waters such as those in coral reef
environments. The irradiance diffuse attenuation coefficient (hereafter referred to as k)
describes the severity of light attenuation in water for that spectral band (Green et al.
2000). It is related to radiance and depth by

Li ¼ Lsi þ ai � ri � e�2kiz; (1)

where, Li is the radiance in band i, Lsi is the mean radiance of deep water in band i, ai is a
constant, ri is the bottom reflectance, ki is the attenuation coefficient of band i, and z is the
depth. By rearranging the above equation using a natural logarithm to generate an image
of bottom type for band i, we obtain

lnðLi � LsiÞ ¼ lnðai � riÞ � 2kiz: (1a)

By applying the same concept for band j, we obtain

1987 2000 2013 

1987 2000 2013 

33° 30′ E 34° E33° 45′ E

33° 30′ E 34° E33° 45′ E

33° 30′ E 34° E33° 45′ E

33° 30′ E

27° 15′ N

27° 30′ N

27° 15′ N

27° 30′ N

34° E33° 45′ E

Figure 3. Images from masking process for 1987, 2000, and 2013, Masked coral/land (top),
masked coral (bottom) in each pair.
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lnðLj � LsjÞ ¼ lnðaj � rjÞ � 2kjz: (1b)

By eliminating z between Equations (1a) and (1b), we obtain

lnðLi � LsiÞ �
��

ki
kj

�
� lnðLj � LsjÞ

�
¼ lnðai:riÞ � ðki=kjÞ lnðaj:rjÞ: (2)

By looking at the quantity on the right-hand side Equation (2), we find that ki and kj are
unknown but fixed constants, and we will discuss how their ratio is determined later in
this section. On the other hand, the two constants ai and aj represent (intensity of sunlight
in wavelength range of band i and j, respectively) × (downwards transmission coefficient
of this light at the surface of the water) × (upwards transmission coefficient of this light at
the surface of the water). Hence, for any given day/image, the intensity of sunlight in
these bands is the same over the entire scene and then the expression on the right-hand
side of Equation (2) will depend only on ri and rj, representing the bottom reflectivity of
the two bands i and j for the pixel in question.

Our goal is to generate an image of reflectance, ri, representing the bottom type, which
theoretically can be done if we rearrange Equation (1a). Yet, this approach is not feasible
because there are too many unknown quantities for each band, namely three variables in
the case of band i (ai,ki,z) (i.e. the value of the constant, ai, mentioned above, the
attenuation coefficient, ki, for band i, and the depth of water at each pixel). The method
of Lyzenga (1978, 1981) does not require the actual calculation of these parameters and
does not estimate k for each band, but uses the ratio of attenuation coefficients between
the pair of bands, ki

�
kj, where kj is the attenuation coefficient of band j.

This ratio given in Equation (3), following Lyzenga (1981), can be determined from
the data per se and obviates the need to know ai and z using the ‘depth-invariant bottom
index’ approach. The physical significance of this approach is that each pixel value for
different bottom types is converted to an index of that specific bottom type, which is
totally independent of depth. Therefore, pixels from similar habitats will have similar
depth-invariant indices corresponding to that specific habitat. This means that if we
consider the whole scene and choose only those pixels for which the bottom reflectivity
is the same (e.g. coral or any other class, ri = rj), then all these pixels will have the same
value as the depth-invariant index. This leads to the expression on the left-hand side of
Equation (2) being known as the depth-invariant index, which is shown in Equation (5).

The depth-invariant bottom index calculation starts by selecting two bands for the
same bottom type and producing a bi-plot of their log transformed radiances at varying
depths to determine the attenuation coefficient. By doing that, we have linearized the
depth effect on the measured radiances of that substratum, and therefore the pixel values
for each band will vary linearly according to their depth only. The slope of the bi-plot
represents the relative amounts of attenuation in each band. To determine the mean deep
water radiance, an area is selected in the data set that represents deep water (i.e. >40 m)
(Green et al. 2000). As suggested by Armstrong (1993), two standard deviations are
subtracted from the mean in order to account for possible sensor noise. Areas of sand are
good because they are fairly recognizable to an interpreter without much field experience
(Green et al. 2000). We avoid areas of shallow water (<1 m) in both bands because of little
variation in short wavelengths, and thus the resulting bi-plot will have a gradient close to
zero and cannot be used to determine the ratio of attenuation coefficients (Green et al.
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2000). In this paper, Equations (3) and (4) shown below are Equations (4) and (5) of
Lyzenga (1981):

ki=kj ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ 1Þ

p
; (3)

where

a ¼ σii � σjj
2σij

; (4)

σii is the variance of band i, and σij is the covariance between bands i and j.
Since the attenuation result depends on which band is chosen as the dependent

variable, the gradient of the line is not calculated using conventional least squares
regression analysis. Therefore, rather than calculating the mean square deviation from
the regression line in the direction of the dependent variable, the regression line is placed
where the mean square deviation (measured perpendicular to the line) is minimized. Then,
following Lyzenga (1978, 1981), we calculate the depth-invariant index following the
simple equation of a straight line, y ¼ pþ q:x, where p is the y-intercept and q is the
gradient of the regression of y on x. The equation then can be rearranged to give the y-
intercept p ¼ y� q:x. This is applied here on the bi-plot of the log transformed radiances
of two bands for the same bottom type at varying depths, with a slope representing the
attenuation coefficient to calculate the depth-invariant index given in Equation 5:

depth-invariant indexij ¼ lnðLi � LsiÞ �
��

ki
kj

�
� lnðLj � LsjÞ

�
: (5)

According to the method of Lyzenga, another minor modification was performed, this
being the rescaling of values to the axis orthogonal to the bi-plot slope or, in other words,
doing an additional orthogonal rotation to align the y-axis along the ki

�
kj gradient.

However, this refinement does not alter the functionality of the process (Edwards 1999;
Green et al. 2000; Vanderstraete, Goossens, and Ghabour 2004). The present study
resulted in three depth-invariant bottom indices – for 1987, 2000, and 2013. Areas of
significant change were then highlighted by performing image differencing for each pair
of depth-invariant bottom indices for these three years. The resulting difference layers
from the three depth-invariant bottom indices produced a binary map highlighting areas of
change. This step is quite important in our analysis since we used our training samples for
classification purposes from areas exhibiting no change in those binary maps.

Prior to implementation, it is suggested that masking out of land, clouds, and deep
water be performed (Edwards 1999; Maritorena 1996; Matsunaga, Hoyano, and
Mizukami 2001) by setting all pixels to zero. The depth-invariant algorithm is implemen-
ted in image-processing software once the ratios of attenuation coefficients have been
calculated for band pairs. Some values of depth-invariant bottom indices are negative, so
an offset is incorporated to convert all data to positive values (Green et al. 2000).

4.3. Classification

Supervised and unsupervised classifications were performed on masked scenes to identify
significant patterns in the images. Unsupervised k-means classification was performed on
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the masked coral images, setting 10 classes defined by the clustering procedure at 5%
threshold with the maximum number of iterations capable of separating the 10 classes.
Supervised classification was also performed on the masked coral/land and masked coral
images, where pixels are grouped into classes that correspond to user-defined training
classes, as explained above in ‘Section 4.2’. Regions of interest (ROIs) were selected to
represent reef ecosystem areas for five marine classes; coral, sand subtidal, sand intertidal,
macro-algae, and seagrass. A numerical interpretation key, used to compare examining
training samples interpreted from satellite images with representative sample sites col-
lected from the field, was not available. Therefore, field measurements and the satellite
image used to classify the Shaab El- Erg sub-area in Hurghada, as performed by
Vanderstraete, Goossens, and Ghabour (2004), were used as our reference.
Vanderstraete, Goossens, and Ghabour (2004) found that the spatial resolution used is
too coarse to map reefs in detail due to spectral mixing in one pixel. Hence, the maximum
likelihood classifier was adopted in our study. The advantages of the maximum likelihood
classifier are that it employs covariance information and is sensitive to different degrees of
variance in the spectral classes (Purkis and Pasterkamp 2004). Classification was followed
by thresholding, using a probability image file to screen out misclassified pixels.

4.4. Change detection

Change detection analysis is used to identify, describe, and quantify differences between
images of the same scene at different times or under different conditions (Lillesand and
Kiefer 2000). In this study, the post-classification comparison change detection method
was applied to compare the 1987 and 2000 supervised classification maps, as well as the
2000 and 2013 supervised classification maps. Change detection statistics, which tabulate
the extent of area experiencing various types of change, were determined for the 1987 and
2000 supervised classification maps, as well as the 2000 and 2013 supervised classifica-
tion maps.

5. Results and discussion

5.1. Unsupervised and supervised classification

The unsupervised k-means clustering classification method produced spectral classes
based on the natural groupings of the image values without definitive class names. The
resulting unsupervised classified images showed different classes according to the class
number assigned, change threshold value, and numbers of iterations applied over the
masked coral images for 1987, 2000, and 2013, which resulted in different colours in this
natural clustering process for each class (see Figure 4). The mis-differentiation between
classes is due to the high spectral similarity among the coral subclasses that leads to
difficulties in using the unsupervised classification as a tool for identification of different
classes. The results of the unsupervised classification shown here did not shed light on
applying k-means clustering to the masked coral/land image. This is because two spectral
extremes are present – coral and land – and hence the clustering method will discriminate
only major different coral versus land subclasses. This might also result in losing some of
the classes belonging to either corals or land because of the strong spectral similarities
within each major class (coral vs. land in our case). k-means provided us with a degree of
knowledge on the possible marine subclasses and highlighted their variability over time,
yet with no association to what class types we were observing. Hence supervised
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classification was performed by creating our own training data set obtained from the
Shaab El-Erg sub-area, following Vanderstraete, Goossens, and Ghabour (2004).

Supervised classification results revealed different distribution patterns for the 1987,
2000, and 2013 images (Figure 5). The unclassified pixels, including the masked water or
land regions together with others within the marine ecosystem, were assigned to the
‘ocean and land’ class. Five classes were obtained in coral masked images, yet with
different numbers of pixels for each class. Table 1 shows the classification accuracy over
time reflected by the lower standard deviation values between the original and classified
images for each band in the coral scenes, for the 1987, 2000, and 2013 images. The
standard deviation is calculated from the DN of all pixels belonging to one class, which is
used to determine the accuracy of classification. The classes obtained appeared at different
percentages over spatial and temporal domains. For instance, the coral class is mainly
located near shores and around islands in the Red Sea (i.e. mangrove islands). Moreover,
sand-related classes are dominant in the 1987 image while macro-algae are dominant in
the 2000 and 2013 images. Such variability is discussed in the section on change detection

33° 30′ E 34° E33° 45′ E

33° 30′ E 34° E33° 45′ E

27° 15′ N

27° 30′ N

1987 2000

Ocean and land

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 10

Class 2

Class 1

2013

Figure 4. Unsupervised classification results for coral images from 1987, 2000, and 2013.
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results. For a better quantitative assessment, the output of the thresholding was produced
to determine the accuracy for the classified image using the minimum distance classifier.
Misclassified pixels appear as black points and were very dominant over the land region,
which is outside the scope of this work and is why the coral/land mask image was not
used. Few misclassified pixels appeared over the masked sea area, yet the overall
assessment agrees with results from previous literature in addition to the new analysis
performed in 2013. Marine classes were compared with the Shaab El-Erg classification
performed by Vanderstraete, Goossens, and Ghabour (2004) (Figure 6).

5.2. Change detection analysis

Figure 7 shows the thematic map representing class changes over the two decades. The
resulting map image of difference is colour coded to indicate the magnitude of change
between the first and last images (i.e. 2000 and 2013). This analysis focuses primarily on
the initial status supervised classification changes (i.e. for each initial status class, the
analysis identifies the classes into which those pixels changed in the final status image).

33° 30′ E 34° E33° 45′ E

33° 30′ E 34° E33° 45′ E

27° 15′ N

27° 30′ N

1987 2000

2013

Ocean and land

Macroalgae

Sandsubtidal

Seagrass

Sandintertidal

Coral

Figure 5. Supervised classification results for coral images from 1987, 2000, and 2013.
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For example, different green variations on the map correspond to changes from either
corals or seagrasses to other benthic components. These observations are in good agree-
ment with the change detection statistics presented in Tables 2 and 3.

This pattern of change is evident, for example, for the zoomed Shaab El-Erg zone.
However, the two light yellow colours dominant in that zone represent sand intertidal
areas that changed to areas dominated by macro-algae and coral, respectively, which is
also evident from the supervised classification results shown in Figure 6.

Tables 2 and 3 show the initial status classes in columns and the final status classes in
rows. Such a layout is required for a complete view of the distribution of pixels that
changed classes during the two time periods (1987–2000 and 2000–2013). For each initial
state class (i.e. each column), Tables 2 and 3 indicate how these pixels were classified in
the final status image. For example, the 10,771 pixels (5.85%) initially classified as coral
in 1987 changed to the macro-algae class in 2000, whereas the same change occurred to
the 3913 pixels (3.58%) in the 2013 image. The class total row indicates the total number
of pixels in each initial status class, while the class total column indicates the total number
of pixels in each final status. For instance, Table 2 shows that 184,302 pixels were
classified as coral in the 1987 image, while 111,063 pixels were classified as coral in
the 2000 image; and Table 3 shows that this coral class ended up with 59,629 pixels in
2013. The class changes row indicates the total number of initial status-assigned pixels
that changed to classes other than the original. In other words, ~59% of pixels that were
initially classified as coral in 1987 had changed to final status classes other than coral, the
equivalent class, but ~67% of the pixels initially classified as coral in 2000 changed to
final status classes other than coral. Hence, the class changes row represents the percen-
tage of this specific class that was modified into other classes. The image difference row is

Table 1. Comparison of standard deviation measurements of the original and supervised classifi-
cation obtained from coral ecosystem images for 1987, 2000, and 2013 scenes.

Coral Sand subtidal Sand intertidal Macro-algae Seagrass

Coral 1987
Band 1 1.401 1.510 1.603 0.769 0.728
Band 2 0.923 0.758 0.913 0.326 0.327
Band 3 1.160 0.226 1.338 1.008 0.556
Band 4 0.169 0.119 0.231 0.168 0.211
Band 5 0.215 0.155 0.287 0.257 0.281
Band 6 0.134 0.107 0.163 0.143 0.168

Coral 2000
Band 1 0.600 0.758 0.526 0.776 0.573
Band 2 0.616 0.904 0.467 0.949 0.150
Band 3 0.689 0.345 0.996 1.567 0.857
Band 4 0.304 0.129 0.395 0.461 0.179
Band 5 0.224 0.143 0.185 0.249 0.121
Band 6 0.188 0.140 0.168 0.195 0.147

Coral 2013
Band 2 0.263 0.340 0.549 0.463 0.260
Band 3 0.344 0.424 0.812 0.658 0.413
Band 4 0.504 0.168 1.172 0.940 0.364
Band 5 0.357 0.060 2.037 0.369 0.082
Band 6 0.065 0.044 0.409 0.050 0.060
Band 7 0.045 0.034 0.216 0.038 0.049
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simply the difference in the total number of equivalently classed pixels in the two images,
computed by subtracting the initial status class totals from the final status class totals. An
image difference that is positive indicates that the class size increased. As such, we
observe a significant increase in seagrass class of ~93% while the sand intertidal, sand
subtidal, and coral expanses show major decreases of ~41%, 37%, and 40%, respectively,
between 1987 and 2000. On other hand, we observe a lower increase in the macro-algae
class of ~20% while sand intertidal and corals show more drastic declines of ~49% and
45%, respectively, between 2000 and 2013. Sand subtidal and seagrass classes showed a
switch in behaviour between the two time periods that may be due to the wide variability
in the macro-algae class increase; this will require further investigation, which is beyond
the scope of this research. However, this can be attributed to the complexity and unknown
magnitude of the phase shift from corals to macro-algae or any other phase shift
mechanisms (McManus and Polsenberg 2004; Norström et al. 2009). Bruno et al.
(2009) observed a decline in phase shift severity over the Caribbean between 1996 and
2006 but no change in the Florida Keys and Indo-Pacific, deducing thereby that corals

Figure 6. Unsupervised classification results for 1987, 2000, and 2013 (first row, colour bar same
as Figure 4) and supervised classification results for 1987, 2000, and 2013 (second row, colour bar
same as Figure 5) in Shaab El-Erg area compared to supervised classification results obtained from
the literature (Vanderstraete, Goossens, and Ghabour 2004) for the same area in 2000 (third row,
colour bar shown here).
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appear to become more resistant to macro-algal blooms than previously assumed. It is
noteworthy that the above-mentioned period overlaps with our second period, 2000–2013.
However, there is a lack of knowledge regarding the effects of herbivory on benthic
communities in the Red Sea (Jessen and Wild 2013). Burdett et al. (2013) attempted to
study the impact of ocean acidification on coastal areas through understanding natural
variability. They found that the production of dimethylsulphoniopropionate (DMSP) by
marine algae and release of the DMSP breakdown product, dimethylsulphide (DMS), are
often related to environmental stress, and applied this to a Red Sea reef system in Egypt.
Furthermore, water column DMS/DMSP concentrations were highest over areas domi-
nated by seagrass and macro-algae (dissolved DMS/DMSP) and phytoplankton (particu-
late DMS/DMSP) rather than corals. Hence our results showing a marked drop in macro-
algae increase (~93% to ~20%), in conjunction with the switching of seagrass change
(from increasing by ~47% between 1987 and 2000 to decreasing by ~74% between 2000
and 2013), are a key indicator of the above-mentioned stress and match very well with the
findings of Burdett et al. (2013).

A general global decline in coral abundance has been observed and attributed to many
ecological and man-made factors (Aronson and Precht 2001; Glynn 1993; McManus,
Reyes, and Nañola 1997). Coral death due to bleaching or infestation by crown-of-thorns
starfish, followed by algal invasion, has been attributed to a number of possible ecological
stresses.

(1) The high abundance of macro-algae in inshore reefs compared with offshore reefs
has been suggested to be a symptom of the recent widespread decline in those
reefs. This decline is apparently attributed to anthropogenic activities and
increased sedimentation from the land (Diaz-Pulido and McCook 2008). These

No Change

From Coral to other classes

From Macroalgae to other classes

From Sandsubtidal to other classes

From Seagrass to other classes

From Sandintertidal to other classes

From Ocean or land to other classes

Figure 7. Thematic change detection map for 2000 and 2013 supervised classification coral
images. Zoomed image shows changes in benthic composition in the Shaab El-Erg area.
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activities include urbanization and coastal development, industries including
power and desalination plants and refineries, recreation and tourism, waste dis-
posal, waste water treatment facilities, coastal mining and quarrying activities, oil
bunkering, and habitat modification, as shown in Figure 8.

(2) Through the Gulf of Suez, a high volume of commercial shipping and heavy
tanker traffic passes to the Red Sea. This in turns increases the number of oil spills
and major ship groundings on Egyptian coral reefs. Frequent oil spills, together
with the phosphate dust that reaches the sea, seem to be among the factors that
cause eutrophication in the shallow lagoon waters of the coral region, and
consequently the development of algae on coral coasts is stimulated.

(3) Sewage and nutrient loading from hotels and resorts, servicing large numbers of
tourists, has directly degraded reefs in the form of fin and anchor damage and boat
groundings.

(4) Overfishing also removes important herbivores that graze on algal patches, thus
facilitating algal growth and spread.

(5) Climate change may be leading to an overall increase in the total amount of
macro-algae and the submergence of some land as a result of rising sea levels
(Diaz-Pulido and McCook 2008).

Overgrown algae out-compete coral species for space on the substrate, turning coral reefs
into algal reefs. Today, destructive fishing is carried out by the use of home-made
explosives composed of fertilizer, fuel, and fuse caps inserted into empty beer bottles
(Pilcher and Abou Zaid 2000). Figure 8 shows the development of urban areas over more
than two decades in Hurghada, where new recreational villages have encouraged contin-
uous urban extension near coastal areas and even into the open sea. Careless investors
build and install huge recreational centres and artificial beaches for the tourism industry
without any consideration for ecosystems or resources, thus destroying coral gardens
through dredging, sedimentation, extensive landfill operations, and changes to the nature
of the reef environment.

1987 2000 2013

Villa of Master  El-

Gouna Hurghada

Figure 8. Comparison of urban areas in Hurghada between images from 1987, 2000, and 2013.
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6. Conclusions

Coral reefs at Hurghada have undergone significant decline. They are damaged, displaced,
polluted, stepped on, and blasted off, in addition to the effects of climate change on the
reefs. One of the most pressing issues affecting reef health is mass coral bleaching that
results from an interaction between human activities and climatic changes (Done 1992;
McManus and Polsenberg 2004). Data that can be extracted from satellite images improve
the ability to identify and assess coral health in a cost- and time-effective manner. This
work has demonstrated a new approach that builds on previous studies to applying
classification to images without the need to carry out field trips and ground truth
measurements. Ground truthing from previous work proved very useful in supporting
our training areas that were selected for supervised classification and hence for identifica-
tion of classes. Unsupervised classification is useful for generating a basic set of classes,
and then supervised classification can be used for further definition of these classes.
Change detection techniques highlight the differences between the 1987, 2000, and 2013
scenes in a qualitative and quantitative way by subtracting the original and classified
images. Thematic difference maps, combined with change detection statistics, tabulate
these differences to identify not only where changes have occurred but also the class into
which the pixels changed and the levels of these changes. We observed variation in
behaviour of class change over the two decades, due potentially to varying stress condi-
tions. During the period 1987–2000, a significant increase in the macro-algae and seagrass
classes, accompanied by a major decline in sand intertidal, coral, and sand subtidal
classes, was observed. However, during the period 2000–2013, we observed an increase
in the sand subtidal and macro-algae classes at the expense of sand intertidal, coral, and
seagrass classes.
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