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ABSTRACT. We present connections between T-colorings of graphs and regular vertex-coloring
for distance graphs. Given a non-negative integral set T" containing 0, a T-coloring of a simple
graph assigns each vertex a non-negative integer (color) such that the difference of colors of ad-
jacent vertices cannot fall in T'. Let oy, (T) be the minimum span of a T-coloring of an n-vertex
complete graph. It is known that the asymptotic coloring efficiency of T', R(T') = limn— o0 22,
exists for any 7. Given a positive integral set D, the distance graph G(Z, D) has as vertex
set all integers Z, and two vertices are adjacent if their difference is in D. We prove that the
chromatic number of G(Z, D), denoted as x(Z, D), is an upper bound of [R(T)], provided
D =T — {0}. This connection is used in calculating xg(m, k), chromatic number of G(Z, D)
as D = {1,2,3,...,m} — {k}, m > k. Early results about xg(m,k) were due to Eggleton,
Erdés and Skilton [1985] who determined xg(m, k) as k = 1, partially settled the case k = 2,
and obtained upper and lower bounds for other cases. We show that xg(m, k) =k, if m < 2k;
and xg(m, k) = f%k"—l], if m > 2k and k is odd. Furthermore, complete solutions for k = 2
and 4, and partial solutions for other even numbers k are obtained. All the optimal proper
coloring presented are periodic with smallest known periods.
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1. INTRODUCTION

The T-coloring of graphs arose from the channel assignment problem which models the
efficiency of assigning an integral broadcast channel to each of several stations so that
interference is avoided. Interference occurs when the separation of channels of two nearby
stations falls within the T-set, a non-negative integral set containing 0. Hale [14] formulated
the channel assignment problem using graphs by representing each station as a vertex and
connecting any pair of nearby stations by an edge. A valid channel assignment (i.e. without
interference) is called a T-coloring. Given a T-set, a T-coloring of a simple graph G(V, E)
is a function f: V(G) — Z7 such that if {u,v} € E(Q), then |f(u) — f(v)| & T.

The efficiency of a valid channel assignment or 7-coloring f can be measured by the
span which is the difference of the largest and smallest numbers in {f(v)|v € V(G)}. Given
T and G, the T-span of G, denoted by spr(G), is the minimum span among all T-colorings
of G. Let o, be the T-span of the complete graph on n vertices. Rabinowitz and Proulx
[20] and Griggs and Liu [11] proved that the asymptotic coloring efficiency of T,

R(T) = lim 2%,
n—oo N
exists and is a rational number. In addition, Griggs and Liu [11] proved that the optimum
difference sequence Ao = {op+1 — 0, }52; is eventually periodic. Note that when 7" = {0},
T-coloring is the same as regular vertex-coloring, and it is easy to see in this case, R(T) = 1.
For any other T-sets with at least one positive integer, R(T") > 2. The parameter R(T) is
also related to a number theory problem [1,13], namely, density of sequences with missing
differences. For discussion about this relationship, we refer the reader to [11].

Given a set D of positive integers, called distance set or D-set, the distance graph
G(Z, D) has as vertex set all integers Z, and two vertices are adjacent if their absolute
difference is in D. Introduced by Eggleton, Erdés, and Skilton [8], the study of distance
graphs was motivated by the plane-coloring problem of finding the minimum number of
colors to color ®?, all the points on the Euclidean plane, so that points with unit dis-
tance receive different colors. The plane-coloring problem is equivalent to determining
x(R2, {1}), the chromatic number of the distance graph with vertex set ®? and D = {1}.
Although it is known that 4 < x(R?,{1}) < 7 ([12, 19]), the exact value remains unknown.
The chromatic number of distance graphs x(Z, D) for different D-sets has been studied
extensively [2, 3, 6 - 10, 12, 23 - 27].

A direct connection between T-colorings and distance graphs is provided by the T-
graphs which have been used as an effective tool in the study of T-colorings [11-13]. For
a given T-set, let D = T — {0}, the T-graph denoted as G, is the complement of the
subgraph of the distance graph G(Z, D) induced by the vertex set Z+ U {0},

Gr =G(27U{0}, T —{0}),

where G denotes the complement graph of G. The T-graph of order n, denoted as G7%.,
is the subgraph of G induced by the first n vertices, {0,1,2,3,...,n — 1}. Therefore,
%= G(Zn, T —{0}), where Z, denotes the vertex set {0,1,2,...,n — 1}.
In Section 2, we will prove for any given T-set, [R(T)] is a lower bound of x(Z, D),

provided D = T — {0}. Rabinowitz and Proulx [20] proved that the clique number (the
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largest number of vertices of a complete graph) of G(Z, D), denoted as w(Z, D), is a lower
bound of [R(T)] when T"= D — {0}. Therefore, for any D, letting D = T'— {0}, we have:

w(Z,D) < [R(T)] < x(Z,D) (1)

The attainability of the sharpness of both inequalities in (1) above for some families of
T-sets will be presented.

Section 3 is devoted to the calculation of the chromatic number of distance graphs for
the D-sets of the form D = {1,...,m} — {k}, & < m. Earlier results for this family
of D-sets were obtained by Eggleton, Erdés, and Skilton [8]. Denoting x(Z, D) when
D =1{0,1,2,...,m} — {k} by xg(m, k), the same authors solved the case k = 1, partially
solved the case k = 2, and provided general upper and lower bounds [8]. We will show that
if T ={0,1,2,...,m} — {k}, then for any odd integer k, xg(m, k) = [R(T)] = [ZAEEL]
(i.e. sharpness for the second inequality in (1).) Exact values of xg(m, k) for k = 2, and
4, and partial solutions for other even values of k are obtained. We present the proofs by
demonstrating periodic optimal colorings with the smallest known periods.

The author has recently discussed the results of this article with Gerard Chang and
Xuding Zhu. An ensuing collaboration settled the values of xg(m, k) for all values of
m and k by using different methods [2], which, however, do not guarantee the smallest
periods.

2. CONNECTIONS BETWEEN R(T) AND x(Z, D)

In this section, we show that R(7T) is a lower bound of x(Z, D), provided D =T — {0}.
The bound is sharp for a number of families of T-sets including the ones listed below. For
any a,b € Z, let [a, b] denote the set of integers {a,a+ 1,a+2,...,b}.

1) r-initial sets: T = [0,7] U A, where A contains no multiple of (r + 1);

2) k-multiple-of-s sets: T = {0, s,2s,...,ks} U A, where A C [s, ks]; and

3) T ={0}U]a,b].

The T-sets in 1) and 2) above are among the few known T-sets for which the following
is always true [4, 16, 21]:

spr(G) = spr(Ky(q)) for all graphs G. (*)
If T'= {0} U [a,b], then (*) holds only when b is a multiple of a [18].
Theorem 2.1. For any given T-set, if D =T — {0}, then [R(T)] < x(Z, D).

Proof. Suppose f is a proper coloring of G(Z, D) with x(Z, D) colors. For any n, let
V., :==10,(n—1)x x(Z, D)] be a subset of the vertex set Z, then |V,,| = (n—1)xx(Z, D)+1.
Because of the pigeonhole principle there has to be a color ¢ such that there are at least
n vertices {vy,ve, -+ ,v,} C V,, which are colored by c. Thus, the numbers vy, vo, -+, v,
form a T-coloring of K,,. Therefore, one has o, < (n — 1) x x(Z, D), since v; < (n — 1) X
x(Z, D). It follows R(T') = lim,, . 2= < x(Z,D) and [R(T)] < x(Z,D). O

We assume throughout this article, unless indicated, for any given T-set, D =T — {0}
and vice versa.

Now, we show that the bound in Theorem 2.1 is sharp for the three families of T-sets
introduced at the beginning of this section.



4 DAPHNE DER-FEN LIU*

Theorem 2.2. IfT is r-initial, that is, T = [0,7] U A, where A contains no multiple of
(r+1), then w(Z,D) = R(T)=x(Z,D)=r+ 1.

Proof. Each collection of r+1 consecutive vertices forms a clique, so x(Z, D) > w(Z, D) >
r + 1. Define a periodic coloring f : Z — [0, 7] by:

f(z)=2', where x =2’ (modr+1),0< 2 <
It is easy to verify that f is a proper coloring. Therefore, x(Z,D) =w(Z,D)=r+1. O

Theorem 2.3. If T is a k-multiple-of-s set, that is, T = {0,s,2s,...,ks} U A, where
A C [s,ks], then w(Z,D) = R(T) = x(Z,D) =k + 1.

Proof. Suppose T is a k-multiple-of-s set. Then the set of vertices {0, s, 2, 3s, ..., ks} forms
a clique in the distance graph, so x(Z, D) > w(Z, D) > k + 1. Define a periodic coloring
f:Z —[0,k| by:

fz) = [éj, where z = i (mod (k + 1)s),0 < i < (k + 1)s — 1.

It is easy to verify that f is a proper coloring. This implies x(Z,D) < k + 1, hence
X(Z,D)=w(Z,D)=k+1. O

Let T'= {0} U [a,b]. If b is a multiple of a, then 7" is a k-multiple-of-s set for which
the result has been proved in the theorem above. If b is not a multiple of a, we have the
following result which, excluding the R(T') part, was proved in [15] and can be obtained
from Theorem 1 in [8]. We include a proof here for completeness.

Theorem 2.4. If T = {0} U [a,b], where b=ak +r and 0 < r < a, then w(Z,D) =k +1
and [R(T)] = x(Z,D) =k +2.

Proof. Suppose T'= {0} U [a, b], where b = ak 4+ r and 0 < r < a. In G(Z, D), it is proved
[18] and indeed not difficult to verify that the set of vertices {0, a, 2a, ..., ka} generates a
maximum clique, so w(Z,D) = k+ 1. It is known [22, 18] that if 7 = {0} U [a, b], then
R(T) = aTer. This implies that x(Z,D) > k + 2. Hence, it is enough to find a proper
(k 4 2)-coloring for G(Z, D). Define a coloring f : Z — [0,k + 1] by,

f(z) = [2J, where z = i (mod (k +2)a),0 < i < (k + 2)a — 1.

It is not difficult to verify that f is a proper coloring. [

It was characterized in [16] that a T-set has the property (*) if and only if x(G}) =
w(G7) for all n > 1. Other known 7-sets with the property (*) include extended k-
multiple-of-s sets [16] and T = {0,1,3,5,7,9} [17]. An extended k-multiple-of-s-set is
constructed from a k-multiple-of-s-set by adding more numbers greater than ks into 1" so
that the equality x(G%) = w(G%) for all n > 1 will not be violated. By using the same
proper coloring defined in the proof of Theorem 2.3, it can be verified that the conclusion
of Theorem 2.3 also holds for extended k-multiple-of-s-sets. On the other hand, if T' =
{0,1,3,5,7,9}, then w(Z, D) = x(Z, D) = 2, since D is a subset of odd integers. Therefore,
we conclude that for all the known T-sets with property (*), w(Z,D) = R(T) = x(Z, D).
Thus, we propose the following conjecture:

Conjecture. IfT satisfies the property (*), then w(Z,D) = R(T) = x(Z, D).
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3 EXACT VALUES OF xg(m, k)

This section focuses on the computation of xg(m, k) which is the chromatic number of
G(Z,D) as D = [1,m] — {k}. Let D,, ; and T, denote the sets D = [1,m] — {k} and
T = [0, m] — {k}, respectively. We shall first calculate the exact value of R(T,, ) which,
by Theorem 2.1, is the lower bound of xg(m, k). Then, we show that the bound is sharp
for many values of m and k including all pairs of integers of m and k where k is odd.
Partial results for other even integers k will lead to complete solutions for k£ = 2 and 4.
Furthermore, all optimal proper colorings presented in this section are periodic with the
smallest known periods.

Eggleton, Erdés, and Skilton [8] proved that for any finite D-set, if G(Z,D) is k-
colorable, then it has a periodic proper coloring with period at most dk?, where d =
maz{i : i € D}. As will be shown in this section, the periods for the distance graph
G(Z, Dy, 1) could be much smaller than that. The method used in this section provides
optimal periodic colorings with very small periods for many values of m and k. For example,
we reduce the period for D = [1,19] — {8} from 240 (cf. [27]) to 29. (See Example 3.21 at
the end of the section.)

Early work about xg(m, k) is due to Eggleton, Erdés, and Skilton [8] who settled the
case k = 1: xg(m,1) = [5(m + 3)], partially solved the case k = 2 (see Corollary 3.18
below) and provided the following general bounds:

max{ k. Ly (5 + DIt < xam, k) < minfm, L+ 3)8 @)

where t :=2if k=3 and t: =k —2if k > 4.

Note that if m < 2k, then T' = [0, m] — {k} is an r-initial set with » = k — 1, so by
Theorem 2.2, w(Z, Dy, ;) = R(Tm.x) = xg(m, k) = k. Hence, throughout this section, we
shall assume m > 2k, unless indicated.

Theorem 3.1. If m > 2k, then R(Ty, ) = ZtEHL

Proof. Tt is easy to see that the sequence o = {0, }52; is the following:
oc=0km+Ek+1m+2k+1.2m+2k+2,..........

That is, 0, = 252 (m + k 4+ 1) if n is odd; and 0, = Z(m + k + 1) — (m + 1) otherwise.
Hence R(T) = limy,—.o0 2 = lim,, oo ZEEEL [T

Corollary 3.2. If m > 2k, then xg(m, k) > [ZtEH],

Proof. The result follows directly from Theorems 2.1 and 3.1. [J

Note that the lower bound of x3(m, k) in the corollary above improves the one in (2).
The following two lemmas will be used to prove that the inequality in Corollary 3.2 is
sharp for some values of m and k, and not for some others.
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m-+k+1
2

Lemma 3.3. If m and k have different parity and xz(m,k) = , then any optimal

proper coloring of G(Z, Dy, 1) is periodic with period m + k + 1.

Proof. Suppose f is an optimal proper coloring using colors [1, %’m] Let G be the
subgraph of the distance graph induced by the vertex set [0, m+k], G = G(Zn+k+1, Dm.k)-
Obviously, we have a(G) = 2, since if a(G) > 3, then o3 < m+k contradicting to the proof
of Theorem 3.1. Since xg(m, k) = L every color in [1, 5] has to be assigned to
exactly two vertices of G.

Let G’ be the subgraph of G(Z, D,, ;) induced by the vertex set [1,m + k + 1], then
G’ = G. Therefore a(G’) = 2, so each color has to be used by exactly two vertices in G.
This implies f(m+k+1) = f(0). The same argument implies that f(i) = f(m+k+i+1)
for any 7. This completes the proof. [

Lemma 3.4. Ifm and k have different parity, and xg(m, k) = [R(Tp )] = ™5 then
xp(m —1,k) = [R(Tn-14)] = 25

Proof. Because G(Z, Dy,_1,1) is a subgraph of G(Z, D
Suppose m and k have different parity and xg(m, k) =

m,k)a S0 X,@(m - ]-ak) < Xﬂ(m7 k)
[R(Ty.k)], then we have

m+k, m+k+1 o

1 m+k+1
2 - 2 = ’

[R(Lor0)] = [ ;

xp(m=1,k) < xp(m, k) = [R(Tm x)] =

Therefore, xg(m —1,k) = [R(Ty—1k)]. O

We are now at a position to show as k is any odd, and m > 2k, then xg(m, k) reaches
the lower bound [R(Tp, k)] = [2424L]. The simpler format of the proof included here is
suggested by Gerard J. Chang through private communication.

Theorem 3.5. Ifk is odd, then x5(m, k) = [R(Ty )] = [ZHEEL].

Proof. Suppose k is odd. By Lemma 3.4, it suffices to prove the result as m is even.
By Corollary 3.2, it is enough to find a proper coloring for G(Z, D,, 1) with %’”1
colors. Define a periodic coloring f : Z — [0, ™+ — 1] with period (m + &k + 1) by

%, if 7 is even
fz)=¢ 22l ifjis odd and i < k
ik if 7 is odd and i > k,

2

where z =i (mod m+k+1),0<i<m+k.

Now we show that f is a proper coloring. Suppose f(z) = f(y), x # y. Let = = 2
(mod m+k+1),y=vy (mod m+k+ 1), where 0 < z’,y' < m+ k.

If 2/ and y’ are both even, then 2’ = y'. This implies x =y (mod m + k+ 1), so x and
y are not adjacent.

If 2’ and v/ are both odd, then without loss of generality, we have either '’ —k = v’ —k or
2’ —k =1y +m+1. For the former case, ' = 3/; and for the latter case, 2’ =y +m+k-+1.
Any of the two cases implies z = y (mod m + k + 1), hence = and y are not adjacent.

If 2/ and 3 are of different parity, assume 2’ is even and 3’ is odd. Then either ' =
y +m+1or a2 =y —k, that is, either 2’ —y' = m+1 or v/ — 2’ = k. Therefore, we have
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either t —y=m+1 (mod m+k+1)ory— 2z =%k (mod m+k+ 1). In any case, z and
y are not adjacent. The proof is complete. [

To solve the case for k even, we let m = 2nk +r, n € Z7, 0 <r < 2k — 1. First of all,
one can make some observations about the clique size of the distance graph. If r < k, then
the set of vertices [0,k — 1] U [2k, 3k — 1] U [4k, 5k — 1] U ... -- U [2nk, 2nk + r| induces a
maximum clique. If » > k, then the set of vertices [0, k — 1] U [2k, 3k — 1] U [4k,5k — 1] U

.- U [2nk, 2nk 4+ k — 1] induces a maximum clique. Therefore, we have the following:

Proposition 3.6. Suppose m = 2nk +r,n € Z* and 0 <r <2k — 1. Then

nk+r+1, if

(Z, Dun.k) { ’
w y Um - .
4 nk + k, if k

Lemma 3.7. If m=2nk+r,ne€ Z* and 0 <r < 2k — 1, then

nk + k = mA2k=r ifr <k;
nk+r+1:%’"+2, ifr > k.

xp(m, k) < {

Proof. We define a periodic coloring on G(Z, D, 1) with period m + k + 1 by first parti-
tioning the vertices [0, m + k] into two parts, A = [0,2nk — 1] and B = [2nk, 2nk + k + r].
Then |A| = 2nk and |B| =k +r+ 1.

Now, color the vertices in A with nk colors as follows. Assign the first k colors to the
first 2k vertices by f(x + k) = f(z) =z, 0 < & < k — 1; then a different set of k colors to
the next 2k vertices, and so on, until all vertices in A are colored. Similarly, if » < k, assign
k colors to vertices in B by: the first k vertices use k colors and for any of the remaining
r+ 1 vertices z, let f(z) = f(z — k). If r > k, assign k colors to the first 2k vertices in B,
and assign a new color to each of the remaining r — k 4 1 vertices in B. Then for either of
these two cases, repeat this coloring to all Z periodically, i.e. f(z) = f(y) if z = y (mod
m+k+1).

It is easy to verify that f is indeed a proper coloring. If f(z) = f(y), then |z — y| is
either k or at least m + 1. The total number of colors used by f is nk + k = %]‘“_T if
r<kjor (nk+k)+(r—k+1)=nk+r+1="E%2ifr > k. The proof is complete. []

Note that the upper bounds in the lemma above are either better than or equal to the
one in (2).

With the following five theorems or corollaries, we show the bound in Corollary 3.2 is
also sharp for some even numbers k and special values of m.

Theorem 3.8. If m =k (mod 2k) and m > 2k, then xg(m, k) = [ e+

Proof. Let m = 2nk + k, then [™+t+1] = nk + k + 1. By Corollary 3.2 and Lemma 3.7,
we obtain yg = [ =nk+k+ 1. O
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Theorem 3.9. If m =k — 1 (mod 2k) and m > 2k, then xg(m, k) = [ 5+,

Proof. Let m = 2nk + k — 1, then [%’““1 = nk + k. By Corollary 3.2 and Lemma 3.7,
we obtain yg(m, k) = [ = nk + k. O

Corollary 3.10. If m =k — 2 (mod 2k) and m > 2k, then xg(m, k) = [ZEH],

Proof. By Theorem 3.5, we only have to show the equality when £ is even. Then k£ — 1 is
odd, by Lemma 3.4 and Theorem 3.9, the proof is complete. [

In the following two theorems, we prove xg(m, k) = [%’“*11 for some special values
of m and k by presenting periodic proper colorings with period m + k + 1. To check that
the colorings are proper is routine. We strongly recommend the reader to look at special
values of m and k as examples.

Theorem 3.11. Ifk is even, m = 0 (mod 2k) and m > 2k, then xg(m, k) = [R(Lm k)] =
m-+k-+2
M=,

Proof. Let m = 2nk, then [R(T,, )] = nk+ % + 1, and w(Z, Dy ) = nk + 1. Let
G = G(Zm+k+1, Dm k). Define the periodic coloring f with period m + k + 1 as follows.
First, color the maximum clique in G by:

f(0) =0, fyy=1, ... , flk—=1)=Fk—1,
F@k) =k, fRk+1)=k+1, ...... JBk—1) =2k — 1,
f(2nk) = nk.

Secondly, let f(2nk+1) =nk+1, f(2nk+3) =nk+2,...,and f(2nk+k—1) = nk+§.
Finally, color the remaining vertices in G by:

f(x—k), if z is even and = < 2nk — 2;
flx)=< flx—m—1), ifziseven and z > 2nk + 2;
f(x+ k), if z is odd and = < 2nk — 1.

Then repeat this coloring to all integers Z periodically. It is not hard to check that if
f(x) = f(y), then |x — y| is either k or at least m + 1. Therefore, f is a proper coloring.
The proof is complete. [

Theorem 3.12. Ifk is even, k > 4, m = 2k — 2 (mod 2k) and m > 2k, then xg(m, k) =
[R(Tpnr)] = 2.

Proof. Let m = 2nk + 2k — 2, then [R(T,, x)] = nk +k + £. By Prop. 3.6, w(Z, Dy ) =
nk+ k. Let G = G(Z,4k+1, D k). Define a periodic coloring f with period m + k+ 1 as
follows. First, color the maximum clique in G by:

£(0) =0, fO=1, ... , Flk=1)=k—1,
F(2k) = K, FQE+1) =k+1, ...... , FBk—1)=2k—1,
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Secondly, color any vertex x > 2nk + 2k in G by:

nk+k+ 5L, ifzisoddand z =2nk+2k+i, 1 <i < k—3;
f(x)=< flx—m—1), if xiseven and 2nk + 2k < = < 2nk + 3k — 4;
nk+k+%—1, ifo=2nk+3k—2.

Finally, for any remaining vertex x in G, let t = ak+1, 1 <a <2n+land 0 < i< k—1.
We color = according to the following:

{f(x—k), ifi=k—1;0r ziseven and i < k — 2;
flz+k), ifzisoddandi#k— 1.

Then extend the coloring f periodically to Z. It is routine to verify that the extended f
is a proper coloring for G(Z, D). O

Now we show that the bound of x3(m, k) in Corollary 3.2 is not always tight.

Theorem 3.13. If k is even, m = k + 1 (mod 2k) and m > 2k, then xg(m,k) =
[R(Tin,1e)] + 1 = B2,

Proof. Let m = 2nk + k + 1, then [R(T,,x)] = nk + k+ 1. By Prop. 3.6, w(Z, Dy, 1) =
nk + k. Suppose xg(m, k) = [R(T), k)] =nk+k+1. Let f be an optimal proper coloring
with colors [0, nk+ k| and let G = G(Z,4k+1, Dm k). Without loss of generality, f assigns
colors [0,nk 4+ k — 1] to the maximum clique in G by

f(0)=0, f(hy=1,  ...... flk—=1)=k-1,
F(2k) =k, FEk+1) =k+1, ...... , FGBk—1) =2k -1,
f(2nk) = nk, f@Cnk+1)=nk+1,...... , f@Cnk+k—1)=nk+k—1.

By Lemma 3.3, each color is used exactly twice in G and f is periodic with period
m+k+1,s0 f(m+k+1)=0, f(m+k+2) =1, etc. Then one can find each remaining
vertex x in G a set of “potential” colors p(x) which are the possible colors from [0, nk+k—1]
that can be assigned to z. For instance, p(k) = {0, k}, p(2nk + k + 2) = {0, nk + 2}, and
p(m + k) = {k — 1}. Suppose y is a vertex in the maximum clique and f(y) = ¢ €
[0, nk + k — 1], then ¢ is a potential color for exactly two other vertices in G, y — k (mod
m+k+1)and y + k& (mod m+ &k + 1).

A vertex v € G is called an even (or odd) vertex if v is even (or odd). The union of
the potential colors of all even (or odd, respectively) vertices is the set of all even (or odd,
respectively) numbers from [0,nk + k — 1]. Now, the new color nk + k must be received
either by two odd vertices or two even vertices. Suppose nk + k is assigned to two even
vertices. The number of odd vertices in G is kn + k + 1 which is odd, so it is impossible to
use each odd color twice. A similar contradiction arrives when nk + k is assigned to two
odd vertices. Thus, xg(m, k) > [R(Tpm.1)]-
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Define a periodic coloring f : Z — [0,nk + k + 1] by:
a .
flz) = LEJk + .

where y=2 (mod m+k+1),0<y<m+k,y=ak+i,0<i<k—1.
It is not hard to check that f is a proper coloring with perlod m + k + 1. The proof is
complete. [

The argument used in the proof above can not be extended to all odd m and even k
(see Theorem 3.16 below). However, it works when Z+X+1 js 0dd, so we have the following
result:

Theorem 3.14. Ifk is even, m+k+1 =2 (mod 4) and m > 2k, then x(m, k) > ZEEEL,

Theorem 3.15. If k is even, k > 4, m = k — 3 (mod 2k) and m > 2k, then xg(m, k) =
m+k+3
s,

Proof. Let m = 2nk + k — 3, then m + k + 1 = 2 (mod 4), by Theorem 3.14, xg(m, k) >
mthtl - According to Corollary 3.10, xg(m, k) < xg(m + 1,k) = =3 O

Theorem 3.16. If m = 12n + 1, then x3(m,6) = [R(T), )| = 6n + 4.

Proof. First, let m = 13, then w(Z, D136) = 8 and [R(T13,6)] = 10. Define a periodic
10-coloring f with period 20 by the following sequence f(0), f(1),... f(19):

]‘727 37 47 57 67 172757 ]‘07 é)ﬁ) 77 87 97 107§7Z7Z7§

The numbers within the two boxes above correspond to the maximum clique. A bold
number represents a new color. An underlined number is the same color as the 6-th
position preceding it; and an overlined number is the same color as the 6-th position
following it, circulantly (mod 20).

It is easy to see that f is a proper coloring. The pattern used in f can be extended
tom = 12n + 1 as follows. If m = 12n + 1 with n > 1, then the maximum clique in
G = (247, Dm.¢) consists of n + 1 blocks with only two vertices in the last block.

Now, color the maximum clique with sequential colors. Then, for vertices after the last
block, use the same underline-overline pattern as the above by replacing 9 and 10 by two
new colors. For every set of 6 vertices between two blocks, follow the underline-overline
pattern used between the two boxes in the above. Then, we get a proper periodic coloring
form=12n+1. O

Theorem 3.17. Ifk is even and m = 2k — 1 (mod 2k), then xg(m, k) = [R(Tm.x)] +1 =
m-+k+3
ML,

Proof. Let m = 2nk + 2k — 1, then w(Z, Dy k) = nk + k and [R(Tp )] = nk + k + £.
To show xg(m, k) > [R(T}, k)], we use an argument similar to the proof of Theorem 3.13.
k) = [R(T)x)] and let f be an optimal proper coloring. By Lemma 3.3,
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f is periodic with period m + k£ + 1. Without loss of generality, f colors the maximum
clique in G = G(Zy4k+1, D k) by:

f(0)=0, fyy=1,  ...... : flk—1)=k—1,
F(2k) = k, FRE+D) =k41, ...... , F3k—1) =2k 1,
f(2nk) = nk, f@Cnk+1)=nk+1,...... : f@nk+k—1)=nk+k—1.

By Lemma 3.3, f assigns each color to exactly two vertices in GG. Therefore, one can
find the set of potential colors p(z) to each of the remaining vertices in G.

Then, the new color N = nk must be assigned to exactly two vertices, x1, 2 € [2nk +
k,2nk + 3k — 1] such that |x; —x9| = k. Suppose f(2nk+k) = f(2nk+2k) = nk, then the
set of vertices that are either colored by or have the potential colors {0, k, 2k, ..., nk} is
A={0,k,2k,3k,...,2nk,2nk+k,2nk + 2k}. Since |A| is odd, it is impossible to use each
color exactly twice. Similarly, one can show that it is impossible to have f(2nk+k+1i) =
f(2nk + 2k + i) = nk. Therefore, xg(m, k) > 2L

By Theorem 3.11, xg(m, k) < xg(m+1,k) = %m The proof is complete. [

Corollary 3.18. Suppose m =4n+r, 0 <r < 3, then

[mE37 " ifr=0,1,2;

m,2) = 2
xo(m,2) {mT% ifr = 3.

Proof. For r = 0,1, and 2, the results follow from Theorems 3.11, 3.9, and 3.8, respectively.
For r = 3, the result is true by Theorem 3.13. [

Note that the cases for r = 0,1 and 2 in the theorem above were first proved by Eggleton,
Erdés, and Skilton [8].

Corollary 3.19. Suppose m =8n+r, 0 <r <7, then

[mE5] ifr=0,2,3,4,6;

m,4) = 2
xp(m,4) {T” ifr—=1,5T.

Proof. For r = 0,2,3,4 and 6, the results follow from Theorem 3.11, Corollary 3.10, and
Theorems 3.9, 3.8, and 3.12, respectively. For » = 1,5 and 7, the claims result from
Theorems 3.15, 3.13, and 3.17, respectively. [

Corollary 3.20. Suppose m = 12n+r, 0 < r < 11, then

mt?) ifr=0,1,4,5,6,8,9,10;
xp(m,6) = ¢ 22 ifr=23,7,11;

bl
10 .
< m"'2' , ifr=2.
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Proof. The cases for r = 0,1,4,5,6, and 10 can be obtained from Theorems 3.11, 3.16,
Corollary 3.10, and Theorems 3.9, 3.8, and 3.12, respectively. The results for r = 3,7 and
11 follow from Theorems 3.15, 3.13 and 3.17, respectively.

If r =9, consider m = 21. Define a periodic coloring with period 28 by the following

sequence f(0), f(2), ..., f(27):
1,2,3,4,5,6,| 1,8,9,4,5,12, |7,8,9,10,11,12,| 7,13,14,10,11,2,3,13,14,6

The notations used above are the same as the ones as the coloring given in Theorem 3.16.
It is easy to check that f is a proper coloring and the pattern used in f can be extended
to the case m = 12n + 9.

The case for r = 8 follows from Lemma 3.4 and the result as » = 9.

For r = 2, [R(T, )] = 2. By the “maximum clique and potential colors” method
used in Theorem 3.13, it can be shown that there is no periodic proper (mTJrS)—coloring
with period m + 7, however, this does not imply xg(m,6) > mT% (since Lemma 3.3 does
not imply to this case.) At least, we find a periodic (%m)—coloring with period m + 7
for this case. We demonstrate such a coloring f when m = 14 by the following sequence,

£0), f(1), .., £(20):
1,2,3,4,5,6,| 1,2,3,4,5,6, [7,89,] 10,11,12,7,8,9.

The notations above are the same as the ones used in Theorem 3.16. It is easy to see that
f is a proper coloring and the pattern can be extended to m = 12n+ 2. [

The “maximum clique and potential colors” method of finding periodic colorings with
small periods used in this section can also be extended to other values of m and k. The
following is an example:

Example 3.21. x(19,8) = 15, and there exists a periodic proper 15-coloring with period
29.

An argument similar to the proof of Theorem 3.17 implies that x(19,8) > 14. The
following sequence shows a periodic proper 15-coloring with period 29.

1,2>3,4>5,6> 7,8> l,]-_oa ﬁa éa E,E,Za §a 9, ]-07 11, 127 13,147§7§>27 5767Q7 15. 0O

Concluding Remark. We have learned that xg(m,k) = R(Tnk) = k if m < 2k.
Suppose m > 2k, then xg(m, k) = [%’“‘H} if k£ is odd. If k is even, Corollaries 3.18 and
3.19 settled the cases k = 2 or 4, respectively. In addition to partial solutions for the case
k = 6 (Corollary 3.20,) by the results obtained in this section, we conclude the following
for some other cases:

Suppose k is even, k > 6, m =2nk +r, 0 <r < 2k — 1, and m > 2k, then we have

. {[%’f“}, ifr=0k—2k—1,k 2k—2;

m, k)=

X [mktl] 1 ifr=k—3,k+1,2k— 1.
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