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Abstract

Let G be a connected graph, and let d(u, v) denote the distance
between vertices u and v in G. For any cyclic ordering π of V (G),

π = (v1, v2, · · · , vn, vn+1 = v1), let d(π) =
n∑

i=1

d(vi, vi+1). The set of

possible values of d(π) of all cyclic orderings π of V (G) is called the
Hamiltonian spectrum of G. We determine the Hamiltonian spectrum
for any tree.

1 Introduction

Although not every connected graph is Hamiltonian (containing a spanning
cycle), there always exists a closed spanning walk in a connected graph. A
Hamiltonian walk of a connected graph is a shortest closed spanning walk;
the length of such a walk is called the Hamiltonian number of G, denoted
by h(G). The value of h(G) measures how far of G from being Hamiltonian.
Let G be a connected graph on n vertices. Then h(G) ≥ n, and the equality
holds if and only if G is Hamiltonian.

A Hamiltonian walk can be expressed as a cyclic ordering of V (G). Let
π = (v1, v2, · · · , vn, vn+1 = v1) be a cyclic ordering of V (G). Denote d(π)
as the sum of the distances between pairs of consecutive vertices in π. That
is,

d(π) =

n∑

i=1

d(vi, vi+1).
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Let H(G) denote the set of values d(π) over all cyclic orderings π of
V (G). The minimum value in H(G) is indeed the Hamiltonian number [4],
h(G); the maximum value in H(G) is called the upper Hamiltonian number,
denoted by h+(G).

The Hamiltonian number, the upper Hamiltonian number and the Hamil-
tonian spectrum for different families of graphs have been studied by several
authors in the literature. It was proved by Goodman and Hedetniemi [6],
and by Chartrand, Thomas and Zhang [4] (with a different approach) that
for any connected graph G on n vertices, h(G) ≤ 2(n−1), and the equality
holds if and only if G is a tree. Upper and lower bounds of h+(T ) for a tree
T were also given in [4]. The values of h+(G) for paths and odd cycles were
obtained in [4, 5]. In [9], Král’, Tong and Zhu determined the Hamiltonian
spectrum for every cycle, and showed a sharp lower bound of h+(G) for
general graphs G in terms of the order and the diameter of G.

Let G be a connected graph, and let v be a vertex of G. The status of
v, denoted by s(v), is the sum of distances from v to all other vertices (cf.
Harary [7]). The minimum status over all vertices is called the weight of G,
denoted by W (G). A vertex with status W (G) is called a median.

In this article, we use the median and weight to determine the Hamil-
tonian spectrum of a tree.

Theorem 1 Let T be a tree on n vertices with weight W (T ). Then

H(T ) = {2(n− 1), 2n, 2(n + 1), · · · , 2W (T )}.

2 Proof of Theorem 1

Let T be a tree rooted at a vertex w. Define the level function on V (T ) by:

Lw(u) = d(w, u), for any u ∈ V (T ).

We shall simply use the notation L(u) when the root w is understood in
the context. Observe

Proposition 1 Let T be a tree rooted at w. For any two vertices u and v,
we have d(u, v) ≤ Lw(u) + Lw(v); and the equality holds if and only if u
and v belong to different components of T − w, unless one of them is w.

By definition, the status of a vertex w in a tree T has

s(w) =
∑

u∈V (T )

Lw(u).

Hence, a median of T is a vertex w with the minimum s(w) over all vertices.
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For a vertex v in T , let κ(v) be the maximum size of a component of
T − v. A vertex w is a centroid if κ(w) is the smallest among all vertices
in T . Zelinka [11] proved that for a tree T , the median and centroid are
identical. Hence, by results of Jordan [8] on centroid, the following results
emerge.

Theorem A. Let T be a tree on n vertices. Then w∗ is a median of T if
and only if each component of T − w∗ contains at most n/2 vertices.

Theorem B. Every tree T has at most two median vertices. If |V (T )| is
odd, then T has a unique median. If |V (T )| is even, then T has two median
vertices, say w and w′, if and only if ww′ ∈ E(T ) and the deletion of ww′

from T results in two equal-sized components.

Direct proofs of the above two theorems, without using centroid, can be
found in [10], in which the weight of a tree is used to investigate multi-level
distance labellings.

Proof of Theorem 1: Let T be a tree on n vertices. Observe that for
every cyclic ordering π, d(π) is even. This is due to the facts that every edge
in T is a cut-edge and d(π) is the length of a closed spanning walk, so each

edge contributes an even number of times to the sum d(π) =
n∑

i=1
d(vi, vi+1).

Next, we prove h+(T ) = 2W (T ). Let w be a median of T , s(w) = W (T ).
Let π = (v1, v2, · · · , vn) be a cyclic ordering of V (T ) with

h+(T ) = d(π) =

n∑

i=1

d(vi, vi+1).

By Proposition 1 and since each vertex of T appears twice in the above
summation, we have

h+(T ) ≤ 2
∑

u∈V (T )

Lw(u) = 2W (T ).

To show h+(T ) = 2W (T ), by Proposition 1, it suffices to find a cyclic
ordering π = (v1, v2, · · · , vn) such that the following is satisfied:

(*) For every i, vi and vi+1 belong to different components of T − w, or
one of vi and vi+1 is w.

Let F1, F2, · · · , Fk be the components of T −w with |F1| ≥ |F2| ≥ · · · ≥
|Fk|. By Theorem A, |F1| ≤ n/2. If |F1| = bn/2c, then we can find a cyclic
ordering alternating between vertices in F1 and vertices not in F1, so (*)
is satisfied. If |F1| = |Fk|, then we can also easily get a cyclic ordering
satisfying (*), as |F1| = |F2| = · · · = |Fk|. If k = 2, it is the case that
|F1| = bn/2c.
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Assume k ≥ 3 and |Fk| < |F1| < bn/2c. We proceed by induction on
n. By Theorems A and B, there exists an end-vertex v ∈ Fk such that the
tree T ′ = T − v also has w as a median. By inductive hypothesis there
exists a cyclic ordering π′ of T ′ satisfying (*). Since |F1| ≥ (|Fk| − 1) + 2
and k ≥ 3, in π′ there are two consecutive vertices vi and vi+1 from two
different components and vi, vi+1 6∈ Fk (or one of vi and vi+1 is w). The
extension π of π′ by inserting v between vi and vi+1 is a cyclic ordering of
T satisfying (*).

It remains to show that for every n ≤ i ≤ W (T ), there is a cyclic
ordering π such that d(π) = 2i. We prove this by induction on n. It holds
obviously when n = 2. Suppose it holds for trees with n − 1 vertices. By
Theorems A and B, there exists an end-vertex v of T such that the tree
T ′ = T − v also has w as a median. Moreover, W (T ) = W (T ′) + d(w, v).
Denote the path from w to v by w = uo, u1, u2, · · · , ut = v, where t =
d(w, v). By inductive hypothesis, for each n − 2 ≤ i ≤ W (T ′), there exists
a cyclic ordering of V (T ′) with d(π′) = 2i. Let π′ be a cyclic ordering of
V (T ′). We extend π′ to π by inserting v after ut−1. That is

π′ = (· · · , ut−1, y, · · ·) ⇒ π = (· · · , ut−1, v, y, · · ·).

It is easy to see that d(π) = d(π′) + 2.

Let π′ be a cyclic ordering of V (T ) with d(π′) = 2W (T ′). To complete
the proof of Theorem 1, it suffices to show that for every 2 ≤ j ≤ t, π′ can
be extended to a cyclic ordering π of V (T ) with d(π) = d(π′) + 2j. Since
d(π′) = 2W (T ′), we assume π′ has the property (*). Hence, we may assume
in π′ the vertex following vt−j, say x, belongs to a different component (in
T ′ − w) other than the one that vt−j belongs to (or one of x and vt−j is
w). We insert v after vt−j to get π. It is clear that d(π) = d(π′)+2j. This
completes the proof of Theorem 1.

Acknowledgment. The author wishes to thank the anonymous referee
for an immediate report.

References

[1] T. Asano, T. Nishizeki, and T. Watanabe, “An Upper Bound on the
Length of a Hamiltonian Walk of a Maximal Planar Graph,” J. Graph
Theory, 4 (1980), 315 – 336.

[2] T. Asano, T. Nishizeki, and T. Watanabe, “An Approximation Algo-
rithm for the Hamiltonian Walk Problems on Maximal Planar Graph,”
Disc. Appl. Math., 5 (1983), 315 – 336.

[3] J. C. Bermond, “On Hamiltonian Walks,” Congressus Numerantium,
15 (1976), 41 – 51.

4



[4] G. Chartrand, T. Thomas, and P. Zhang, “A New Look at Hamiltonian
Walks,” Bulletin of the Institute of Combinatorics and Its Applications,
42 (2004), 37 – 52.

[5] G. Chartrand, T. Thomas, and P. Zhang, “On the Hamiltonian Num-
ber of a Graph,” Congressus Numerantium, 165 (2003), 51 – 64.

[6] S. Goodman and S. Hedetniemi, “On Hamiltonian Walks in Graphs,”
SIAM J. Comput., 3 (1974), 214 – 221.

[7] F. Harary, “Status and Contrastatus,” Sociometry, 22 (1959), 23 – 43.

[8] C. Jordan, “Sur les Assemblages de Lignes,” J. Reine Agnew. Math.,
70 (1869), 185 – 190.

[9] D. Král’, L.-D. Tong, and X. Zhu, “Upper Hamiltonian Numbers and
Hamiltonian Spectra of Graphs,” manuscript, 2005.

[10] D. Liu, “Radio Number for Trees,” Disc. Math., to appear.

[11] B. Zelinka, “Medians and Peripherians of Trees,” Arch. Math. (Brno),
4 (1968), 87 – 95.

5


