Math 5680

Homework # 5

The residue theorem

- 1. Calculate the following integrals
 - (a) $\int_{|z|=1/2} \frac{dz}{(1-z)^3}$ where the curve is oriented counter-clockwise
 - (b) $\int_{\gamma} \frac{dz}{(1-z)^3}$ where γ is the circle centered at 1 with radius 1, oriented counter-clockwise
 - (c) $\int_{|z-2|=2} \frac{e^z}{(1-z)^3} dz$ where the curve is oriented counter-clockwise
 - (d) $\int_{|z-1|=1/2} \frac{e^z}{z(1-z)^3} dz$ where the curve is oriented counter-clockwise
 - (e) $\int_{\gamma} \frac{e^z}{z^2(z-1)^3} dz$ where γ is the circle centered at 0 with radius 2, oriented counter-clockwise
- 2. (a) Show that $\cos(z) = 0$ if and only if $z = \frac{\pi}{2} + \pi n$ where $n \in \mathbb{Z}$.
 - (b) Evaluate $\int_{\gamma} \frac{\sin(z)}{\cos(z)} dz$ where γ is a circle of radius π centered at π .
- 3. Evaluate $\int_{\gamma} \frac{1}{e^z 1} dz$ where γ is a circle of radius 9 centered at 0.
- 4. Evaluate $\int_{\gamma} \frac{e^{z^2}}{z^2} dz$ where γ is the square with the four vertices 1+i, -1+i, -1-i, and -1+i.