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ARTICLE INFO ABSTRACT

Keywords: Mangroves habitat present an important resource for large coastal communities benefiting from activities such as
Mangrove fisheries, forest products and clean water as well as protection against coastal erosion and climate related ex-
Arabian Gulf treme events. Yet they are increasingly threatened by natural pressure and anthropogenic activities. We observed
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an inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a vital habitat and
resource for the local ecosystem, according to the United Stated Geological Survey (USGS) mangrove database
through spectral analysis. Change detection analysis is conducted on mangrove forests along the Saudi Arabian
coast of the WAG for the years 2000, 2010 and 2018 using Landsat 7 & 8 data. Three supervised classification
methodologies are employed for mangrove mapping, including Supported Vector Machine (SVM), Decision Tree
(DT), referred to as Classification and Regression Trees (CART) and Random Forest (RF). CART’s accuracy was
recorded to be > 95% while other classifiers were > 90%. The CART supervised learning classifier, mapping
mangroves’ distribution and biomass using Google Earth Engine (GEE) online platform, indicates an overall
increase in the northern Tarut Bay and Tarut Island, by 0.21 km? from 2000 to 2010 and by 1.4 km? from 2010 to
2018. The increase might be due to mitigation strategies such as mangrove breeding and plantation. It can be
challenging to detect changes in certain regions due to the inadequate resolution of Landsat where submerged
mangroves can be confused with salt marshes and macro algae. We employed a new method to identify and
analyze submerged mangrove forests distribution via a submerged mangrove recognition index (SMRI) and
Normalized Difference Vegetation Index (NDVI) in Abu Ali Island. Our results show the robustness of SMRI as an
effective indicator to detect submerged mangroves in both high and medium spatial resolution satellite images.
NDVI values differentiated submerged mangroves from tidal flats between Landsat 7 & 8 as well as during
conditions of low and high tides. High resolution WorldView-2 image showed agreement of mangroves dis-
tribution with the SMRI and NDVI results.

1. Introduction complex species, they are one of the most productive ecosystems in the
world (Donato et al., 2011), providing considerable services to human

Mangrove forests are present in the intertidal zone, located within communities with ecological and economic values to protect shoreline
small groups of trees and shrubs in the harsh interface between sea and from storms, erosion, and sedimentation (Moore et al., 2015), as well as
land. They are distributed largely in the tropical and subtropical areas providing nutrients for algae blooms (Li et al., 2017; Li et al., 2018).
between 30°N and 30°S latitude. As a habitat to rich and biologically The protective role of mangrove forests was also recognized during

Abbreviations: SMRI, submerged mangrove recognition index; NDVI, Normalized Difference Vegetation Index; GEE, Google Earth Engine; WAG, Western Arabian
Gulf
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Asian Tsunami of 2004 and other natural disasters such as hurricanes
(Danielsen, 2005; Kathiresan and Rajendran, 2005). The analysis of the
economic values of the mangrove forests is necessary for integrated
land use planning and environmental decision-making (Vo et al., 2012).
A Mangrove Quality Index (MQI), ranking 1 (worst) to 5 (excellent),
was developed to evaluate the overall mangrove health status of man-
grove ecosystems in Matang, Malaysia (Faridah-Hanum et al., 2019).

In addition, mangrove forests, acting as significant carbon sinks,
play an important role in climate change (Donato et al., 2011). How-
ever, mangroves are threatened due to both anthropogenic and natural
stressors. For instance, over the western Arabian Gulf, increased soil
contaminations of heavy metals was found in the mangrove habitats
(Al-Kahtany et al., 2018; Almahasheer, 2019). One third of their forests
has been lost in the past half century (Alongi, 2002). It is estimated that
35% of the mangrove forests were lost during 1980 to 2005
(Millennium Ecosystem Assessment, 2005) in a much faster declining
rate than coral reefs and inland tropical forests (Duke et al., 2007).
Mangrove habitat land use change is used as an indicator for environ-
mental quality, for instance, such a change can affect soil microbial
biomass (Dinesh and Ghoshal Chaudhuri, 2013), as well as intertidal
fish communities (Ellis and Bell, 2013). If no actions are taken to pro-
tect the mangrove ecosystem, 30-40% of coastal wetlands and 100% of
mangrove forest could lose their functionalities in the next 100 years
with the present declining rate (Shapiro et al., 2015).

Mangrove forests cover around 152,000 km? in 123 countries and
territories in the tropics and subtropics of the world (Spalding et al.,
2010), among which Middle East region has 624 km?, about 0.4% of
global coverage. Arabian Gulf, one of the most important inland sea at
this region, is little known about its coverage and distribution of
mangrove forests. The Arabian Gulf is a shallow basin of an average
depth of 35m, extending approximately 24°-30°N and 48°-56°E (Al-
Muzaini and Jacob, 1996). Its coastlines, which is the most arid in the
world, were formed in the past 3000-6000 years (Burt, 2014). The
water temperature vary from around 12 °C to 35 °C (Price et al., 1993),
and the surface temperature in intertidal zones can exceed 50 °C in the
summer (Burt, 2014). The salinity in the Arabian Gulf is as high as
43 psu and may even reach 70-80 psu in tidal pools and lagoons. This is
due to the high-latitude geographical location, high evaporation rates,
as well as relative shallowness. In such an extreme environment, most
of the marine species in the Arabian Gulf reach their tolerance limits
(Price et al., 1993). Mangroves, however, are able to survive in this
region because they tolerate the high salinity at early stages of devel-
opment (Naser and Hoad, 2011). One type of mangroves, Avicennia
marina, can be sparsely found at the southern shores, confined to
sheltered coastal areas along the coastlines of Saudi Arabia, Arab
Emirates and Qatar (Burt, 2014). Despite the low volume, low diversity
and intermittent occurrence of mangroves, the presence is of significant
ecological importance in this region. Mangroves are among the only
trees in the desert landscape, offering food for livestock and other wild
animals. They support a variety of essential species of birds, fish,
shrimps and turtles, contributing substantially to the coastal pro-
ductivity (Al-Maslamani et al., 2013). It has been reported that Tarut
Bay alone has lost a significant 55% mangrove forests (mostly in the
south part) from 1972 till 2011 (Almahasheer et al., 2013). This is at-
tributed to human and environmental pressures such as pollutants, land
reclamation and urban encroachment. On the other hand a regional
research of decadal changes of the Red Sea mangrove forest showed a
slight increase of its coverage (Almahasheer et al., 2016). Fortunately,
the mangrove forests has been in a recovery process with small increase
by plantation activities by both government (i.e., the Ministry of
Agriculture) and industry (Saudi-Aramco 2016) in Saudi Arabia. As
early as 1970s, vegetation indices had been used for quantitative
measurement of vegetation conditions (Rouse et al., 1973; Gitelson
et al.,, 1996; Ahamed et al., 2011). High spatial resolution remote
sensing imagery could generate various vegetation indices, such as
Normalized Difference Vegetation Index (NDVI, NDVI2), Normalized
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Difference Red Edge index (NDRE, NDRE2), Green Normalized Differ-
ence Vegetation Index (GNDVI) and Chlorophyll Vegetation Index
(CVI), which have been widely investigated to mangrove and other
species, such as mangrove canopy chlorophyll concentration
(Heenkenda et al., 2014, Heenkenda et al., 2015, Vincini et al., 2007,
2008), feedstock biomass production (Ahamed et al., 2011), and low
and high density mangrove estimation (Mutanga et al., 2012; Al-Ali
et al., 2015; Almahasheer et al., 2013, Almahasheer et al., 2016).

Mangroves have very distinct spectral features in remote sensing
data, especially in the spectral ranges corresponding to the visible red,
near-infrared, and mid-infrared, making it easier to classify than other
land cover types. The best combination of spectral bands to detect
mangroves are Landsat 7 bands 3 (0.63-0.69 um), 4 (0.77-0.90 um), 5
(1.55-1.75 um), and 7 (2.09-2.35 um) (Giri, 2016). Therefore, indices
like the Normalized Difference Vegetation Index (NDVI) are useful in
identification it has been employed for other applications (Kim et al.,
2014; Whitney et al., 2018). Recent advancement in computing and
information technology, image-processing methodologies, as well as
the availability of remote sensing data, have provided an opportunity to
monitor mangroves at regional and global scales on a consistent and
regular basis. Meanwhile, there has been an increase in high-perfor-
mance cloud computing platforms, such as the NASA Earth Exchange
(NEX), Amazon Web Service (AWS), and Google Earth Engine (GEE).
The advantages of cloud computing include the parallel computing,
offering nearly unlimited computer processing capabilities, as well as
free access to a large volume of satellite remote sensing data stored in
the remote cloud drives. This eliminates the need for large external
hard disk storage and facilitates easy data access. For example, GEE
provides preprocessed Sentinel data (2014-present), Landsat data
(1982-present), as well as advanced classification machine learning
algorithms accessible through JavaScript and Python programs (Giri
et al., 2015). One research project utilized GEE to analyze the changes
of mangrove forests over 30 years in Thailand (Pimple et al., 2018). It is
noteworthy that this Thailand mangrove study didn’t use the Landsat 7
data after 2003 and had a missing scene in the year of 2012. This is
because Landsat 7 Enhanced Thematic Mapper (ETM) sensor had a
failure of the Scan Line Corrector (SLC) on 31 May 2003. Since that
time all Landsat ETM data has wedge-shaped gaps on both sides of each
scene, resulting in approximately 22% of data loss.

Mangrove forests mapping methods are usually based on a single-
day imagery analysis, which can suffer from low or high tides. Such
analysis can suffer by not taking the tide levels into consideration given
that mangrove forests are periodically submerged by tides. This can
impose a problem of over or under estimation in mangrove mapping
when the images are observed during high-tide periods. Since man-
groves grow along often-narrow extent along coastlines, detailed
mangrove ecosystem characterization becomes difficult with moderate-
resolution (30 m) satellite data and there is a need for high-resolution
imagery to gain more accurate mapping results at different tide levels
(Green et al., 1998). A recent study proposed a new method to identify
submerged mangrove forests via a submerged mangrove recognition
index (SMRI) using high-resolution satellites’ images, which considered
different spectral signatures of mangroves under both low and high tide
levels (Xia et al., 2018). However, due to naturally and/or human
factors, mangrove communities along the Arabian Gulf coastlines cov-
ering more than 165 km? are predominantly separated from each other
(Almahasheer, 2018). This fragmentation brings massive cost to study
mangrove at a regional scale with only using high resolution remote
sensing images. For example, SA has a 700 km long coastline in WAG
(Bird, 2010). This will cost around $26,600 for getting entire coastline
using WorldView-2 images with 8-bands for one time period (calculated
from price listed in www.landinfo.com: $19/km? with 2 km minimum
order width). The mangrove change detection study of two periods will
cost double the price. Therefore, there is a need to improve mangrove
detection methods through free accessible medium-resolution satellite
imagery (such as Landsat 7/8). Here we employed high resolution
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Fig. 1. Mangrove distribution in WAG for regions 1: Manifah, 2: Al-Khair, 3: Jubail, 4: North Tarut Bay, 5: North Middle Tarut Bay using (a) USGS Global Mangrove
Forest Distribution of year 2000 (red color) (b) World Atlas of Mangroves of the year 2010 (blue color) (c) Mangrove Forest Biomass of the year 2014 (black color).
The red arrows point to the mangroves, and black box highlights the massive mangrove coverage of USGS data.

images for selected regions for validation purposes.

We present a multi-indices based approach, using NDVI and SMRI,
for long term mapping of mangrove forests in the WAG region along the
Saudi Arabia coast. In this study, we evaluate the accuracy of three
existing mangrove forests datasets and for the first time, incorporated
SMRI as a new assessment for detecting submerged mangrove at dif-
ferent tide levels over the WAG region using Landsat medium-resolu-
tion remote sensing images.

2. Materials and methods
2.1. Data

Three mangrove datasets were used in this research: 1) USGS Global
Mangrove Forest Distribution of year 2000 (Giri et al., 2011). This
dataset was generated using Landsat satellite images of more than 1000
scenes obtained from the USGS Earth Resources Observation and Sci-
ence Center (EROS). Mangroves were classified using hybrid supervised
and unsupervised digital image classification techniques. 2) World Atlas
of Mangroves. This dataset shows the global distribution of mangroves,
and was produced as a joint initiative of the Food and Agriculture Or-
ganization of the United Nations (FAO), the International Tropical
Timber Organization (ITTO), International Society for Mangrove Eco-
systems (ISME), UN Environment World Conservation Monitoring
Centre (UNEP-WCMC) (Spalding et al., 2010), United Nations Educa-
tional, Scientific and Cultural Organization's Man and the Biosphere
Programme (UNESCO-MAB), United Nations University Institute for
Water, Environment and Health (UNU-INWEH), and The Nature Con-
servancy (TNC). 3) Global Distribution of Modelled Mangrove Biomass
(2014) (Hutchison et al., 2014). This dataset was developed by the
Department of Zoology in University of Cambridge, with the support
from The Nature Conservancy. It shows the global patterns of above-
ground biomass of mangrove forests based on a review of 95 field
studies on carbon storage and fluxes in mangroves world-wide.

Two kinds of remote sensing images are used here: 1) WorldView-2
image. WorldView-2 is a high-resolution satellite launched on October
8, 2009 from Vandenberg Air Force Base, CA. WorldView-2 collects 46-
centimeter (cm) panchromatic and 1.85-meter (m) multispectral ima-
gery. In this research, we obtained the image of four traditional bands
(i.e. blue, green, red and NIR) over the Abu Ali Island during September
2017 to study for the submerged mangrove detection. 2) Landsat 5,
Landsat 7, and Landsat 8 Surface Reflectance Tier 1 dataset from the
Landsat 5 TM, Landsat 7 ETM + sensor and Landsat 8 OLI/TIRS sen-
sors. These images contain 4 visible and near-infrared (VNIR) bands of
30 m resolution for Landsat 7 (5 VNIR bands for Landsat 8), 2 short-
wave infrared (SWIR) bands of 30m resolution processed to
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orthorectified surface reflectance, and one thermal infrared (TIR) band
of resampled 30 m resolution for Landsat 5/7 (2 thermal bands for
Landsat 8) processed to orthorectified brightness temperature. The
surface reflectance dataset was provided from GEE. They have been
atmospherically corrected using The Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS), and include a per-pixel satura-
tion mask and a cloud, shadow, water and snow mask produced using C
Function of Mask (CFMASK). In this study, we utilized Landsat 5 image
of 1985, Landsat 7 images of 2000, 2010 and 2018, and Landsat 8
images of 2018 for the aforementioned three mangrove datasets for
inter comparison. Landsat 7 and 8 images were also used for detecting
the mangrove changes between 2000, 2010, and 2018. Moreover, we
obtained and processed Landsat 7 and Landsat 8 images of 2017 to
quantify the submerged mangrove in Abu Ali Island based on tidal data.
The tidal data was accessed from the harmonic model by WorldTides™
(https://www.worldtides.info) that uses a number of public and li-
censed sources for tidal predictions as well as land-based station ob-
servations from tide gauges and satellite observations when available
for the maximum accuracy. Since tides are caused by the gravitational
pull on water from the sun, moon, and other planets, hence the grav-
itational pulls’ frequencies are well known, thus harmonic analysis
models are employed here for future water levels prediction based on
past observations.

2.2. Study region

Fig. 1 shows mangrove distribution for the years 2000, 2010 and
2014, respectively, using the three existing mangrove datasets over the
WAG. The 2000 image from USGS Global Mangrove Forest Distribution
is accessed through GEE searching tool, and 2010 image from World
Atlas of Mangroves and 2014 image from Mangrove Forest Biomass are
converted into GeoTIFF format files, then imported into GEE. Along the
coast of Saudi Arabia, five regions are studied based on the mangroves’
distribution: 1. Manifah, 2. Al-Khair, 3. Jubail, 4. North Tarut Bay, and
5. North Middle Tarut Bay, all marked by correspondent numbers in the
Fig. 1. Fig. 1 shows obvious differences among the three datasets, for
instance, mangroves in region 1 (Manifah) and region 2 (Al-Khair) can
be found in 2000 (pointed at by the red arrow), but disappeared in 2010
and 2014. Mangroves of region 3 (Jubail) are observed in all three
years, with the highest coverage in 2000 highlighted in black squared
area, whereas in 2010 and 2014 the mangrove only be marked in the
Gurmah Island (at location 3 in green color 2010 and red color 2014).

On the north side of region 4 (North Tarut Bay), both the 2010
(Fig. 1b) and 2014 (Fig. 1c) are marked with a mangrove distribution
(pointed by a red arrow) near Ras Tanura, but not much appearing in
the 2000 data (Fig. 1a). In addition, mangroves are distributed in region
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5 (North Middle Tarut Bay) in the 2010 data (pointed by a red arrow in
Fig. 1b) and 2014 (Fig. 1c), while they do not appear that much in 2000
(Fig. 1a). Therefore, it is clear that large discrepancies were identified
among these three years datasets. This could be explained either due to
a massive decline and disappearance of mangroves in 2000 in regions 1
&2&3 after 2010 or a misclassification of the mangrove dataset by USGS
accounting for other species as mangroves. Therefore, accurate assess-
ment and validation work is highly needed to avoid misleading data-
sets, especially if it were to be used to build models for future mangrove
change detection researches and for stakeholders and decision makers.
In this study, we conducted a spectral analysis over the commonly re-
cognized mangrove areas (in regions 3, 4 and 5), and from uncertain
mangrove areas (region 3). The unique spectral signatures from man-
grove habitats could help accurately decide on the consistency of dis-
tribution for mangrove habitats across the different data sets and at
different locations.

2.3. Methodology

2.3.1. Classification methods

The workflow of generation and validation of mangrove classifica-
tion model along with the procedures of classifying mangrove forests
follow the workflow of the change detection analysis of coral reef ha-
bitat using Landsat data in the Red Sea (Hurghada, Egypt) (El-Askary
et al., 2014). The Landsat 7&8 images of the year 2018 are used to
generate different mangrove detection models, including Supported
Vector Machine (SVM), Decision Tree (DT), referred to as Classification
and Regression Trees (CART) and Random Forest (RF). The results of
these models are evaluated by the accuracy (generated from confusion
matrices), and by comparing with high-resolution image from Google
Earth. Then the most effective models are selected to classify the
mangrove distribution for the areas of interest among the year of 2000,
2010, and 2018 using Landsat 7&8 images. It is noteworthy that
Landsat 5 did not provide image after August 1st 2002 in these regions.
Alternatively, Landsat 7 images during the year 2010 were processed
with GEE built-in mosaicking method to guarantee ideal results.

2.3.1.1. CART. CART, a supervised classification mining method, is
used here to construct a decision binary tree structure through iterative
analysis based on the training dataset that consists of features (i.e.
spectral signatures) and target variables (i.e. mangrove or other classes)
(Breiman, 1998). It has been widely used in land use analysis and
change detection (Lawrence and Andrea, 2001), wetlands and
mangrove distribution classification (Pantaleoni et al., 2009; Zhao
et al.,, 2014). In this research, we used the maximum tree depth
which controls the maximum number of allowed levels below the
root node to construct the decision tree. Normally, the larger the
maximum tree depth value, the more complex the decision tree and the
higher the classification accuracy. Through multiple trials and the 10-
fold cross validation, a maximum tree depth value of ten was selected
for the CART classification.

2.3.1.2. SVM. The SVM machine learning algorithm, a well-adapted
technique for solving non-linear, high dimensional space classifications,
is used here as it showed a good performance in mangrove satellite
sensing (Heenkenda et al., 2014; Heumann, 2011; Kanniah et al., 2015;
Wang et al., 2018). It was found that SVM has better performance than
maximum likelihood and artificial neural network classifiers using
Landsat TM image (Pal and Mather, 2005). Moreover, SVM
outperforms discriminate analysis and decision-tree algorithms for
airborne sensor data (Foody and Mathur, 2006). SVM uniqueness
from other traditional classification approaches stems from its ability
to create a hyperplane through n-dimensional spectral-space. This plane
separates classes (mangroves versus others) based on a user defined
kernel function (linear in our case) and parameters that are optimized
using machine-learning to maximize the margin from the closest point
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to the hyperplane.

2.3.1.3. RF. RF is a relatively new technique for mangrove species
mapping, though it has been widely applied in landscape (Duro et al.,
2012; Li et al., 2016) and plant species (Le Louarn et al., 2017; Ng et al.,
2017) classification with different sensors in recent years. The RF
algorithm is an ensemble algorithm for supervised classification based
on CART. However, by combining the characteristics of CART together
with further bootstrap aggregating, and random feature selecting,
independent predictions can be established and therefore improve
accuracies. For the RF algorithm, the tuning parameters mainly
included “number of features”. This controls the size of a randomly
selected subset of features at each split in the tree building process,
which could have sensitive impact on classification (Duro et al., 2012).
The other tuning parameter also includes the maximum number of trees
(Su et al., 2017). In this research, the maximum level of trees used was
five above which the accuracy did not change much.

2.3.2. Submerged mangrove recognition index (SMRI)

Most previous change detection research of mangrove forests are
based on remote sensing images captured at different dates, not con-
sidering the impacts of tide level changes (Collins et al., 2017; Li et al.,
2013; Rogers et al., 2017; Xia et al., 2018). However, mangrove forests
are distributed near the land-sea interface, such as shorelines and in
elongated or fragmented patches, especially in the WAG. These man-
groves periodically receive inundation of sea water, where the fluctu-
ating water underneath the canopy dramatically changes the spectral
signatures as observed using satellite images. Therefore, it is difficult to
retrieve accurate mangrove information using the methods based on
single-day remote sensing imagery comparison of vegetation indices
(i.e. NDVI). Recently, Xia et al. (2018) proposed a submerged mangrove
recognition index (SMRI) by using high-resolution GF-1 images in both
low and high tides, to describe the unique spectral signature of sub-
merged mangroves and to distinguish mangroves forests submerged by
different tide levels. The detailed form of the SMRI index is based on a
combination of NDVI (Rouse et al., 1973) and near-infrared bands,
shown below:

SMRI = (NDVI, — NDVI,) X NIR, = NIRy
NIR;, (@)
NDVI = NIR, — R,
NIR; + R, (2
NDVI, = M
NIR, + Ry, 3)

where NDVI) and NDVI, are the NDVI values at low tide and high tide,
respectively. NIR; and NIR, are the reflectance values of the near-in-
frared band at low and high tide, respectively. R, and R, are the re-
flectance values of the red band at low and high tide, respectively. In
this research, we apply this index for detecting the submerged man-
grove forests with Landsat medium-resolution imagery.

We also conducted studies to look at the effects of tide levels on the
mangrove classification. WorldView-2 image was utilized to provide
training data and validation for unsupervised classification cluster of
mangrove in Abu Ali Island during the limited time period of September
2017. Landsat 7&8 images were used to implement the unsupervised
classification method to explore the attributes of submerged mangroves
for the same time period over the same region. All of the images were
preprocessed, subset for coastal areas only and not including terrestrial
vegetation and masked for marine habitats only and excluding water
and land. We also applied the NDVI and SMRI, a new indicator to im-
prove the submerged mangrove detection and to detect tidal impacts. It
is noteworthy that all the Landsat and WorldView-2 images are visua-
lized with false color configurations (R: near infrared band, G: red band,
B: green band) to highlight the vegetation as red areas. Supervised
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Fig. 2. Endmembers selection for spectral reflectance analysis using red and green points over (a) Jubail Conservation; (b) Tarut Bay. Red locations: classified as
Mangrove forests according to USGS dataset only and Green locations: classified as Mangrove forests according to all three datasets with spectral profiles (c & d), (e &
), (g & h), (i & j) for 1985 Landsat 5, 2000 Landsat 7, 2010 Landsat 7, and 2018 Landsat 8 images, respectively.

classification models using three algorithms (CART, SVM and Random
Forest) are implemented here to distinguish mangrove habitats from
others.

3. Results and discussion
3.1. Comparison of existing mangrove datasets

Spectral analysis was conducted here to evaluate the data accuracy
across different sources. Mangroves spectral signature is quite unique
and has been correctly identified, used and compared with other
sources to avoid misclassification with other marine habitats, namely
salt marshes and macro algae (Benson et al., 2017; Corcoran et al.,
2007; Giri, 2016; Ranjan et al., 2017). The left panel of Fig. 2 shows the
spectral signature of end members from the mangrove habitat only
identified by USGS Global Mangrove Forest Distribution dataset (red
points in Fig. 2a). They are displayed as Landsat 5 image of 1985 in
Fig. 2c, the Landsat 7 images of 2000 in Fig. 2e and 2010 in Fig. 2g, and
Landsat 8 image of 2018 in Fig. 2i. The right panel of Fig. 2 shows the
spectral signature of samples from mangrove habitat agreed by all of
three datasets (green points in Fig. 2b). They are displayed as the
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Landsat 5 image of 1985 in Fig. 2d, the Landsat 7 images of 2000 in
Fig. 2f and 2010 in Fig. 2h, and Landsat 8 image of 2018 in Fig. 2j. It is
noteworthy that the bands in Landsat 8 are renamed to have the same
spectral range of Landsat 5 and Landsat 7. It is quite evident that the
spectral distributions are coherent as shown in Fig. 2(d, f, h and j), with
high value at band 4 and lower value at band 5 and band 7. However,
Fig. 2(c, e, g and i) does not show the same pattern — band 5 value is
always higher than the value of band 4 which should not be the case.
From the above and based on the conducted spectral analysis using a
wide range of endmembers and comparing with established research,
we believe that USGS data overestimated mangrove habitats distribu-
tion. On the other hand, the data obtained from Saudi Aramco
(Loughland and Al-Abdulkader, 2011) shows the misclassified locations
in the USGS dataset as saltmarsh habitats. The Landsat 5 data in 1985
was able to distinguish saltmarsh from mangroves, which is even more
accurate for Landsat 7 & 8. This is because in Landsat 7 &8 the values of
each band show more distinctive behavior as compared to Landsat 5
images, where all bands show less distinction Fig. 2(d, f, h and j).
Considering these differences and facts between these sensors, we opted
to perform the change detection analysis on the mangroves habitats
using Landsat 7&8 data.
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Fig. 3. Supervised classification results of Landsat 7 image of 2018 for the mangrove forests (green area) and corresponding mangrove coverage (in hectares) using
CART (a, e, i), SVM (b, f, j), RF (c, g, k), compared with high resolution true colour Google Map image (d, h, 1), for GI (a-d), NMTB (e-h) and NTB (i-1).

3.2. Mangrove change detection

The supervised classification models used in this study (i.e. CART,
SVM and RF) were built using the same training datasets from Landsat 7
(all samples from non-gap areas) and Landsat 8 images during 2018.
Five different categories, namely: arid land, mangrove, tidal flat, salt-
marshes and water body were identified using 30 sample observation
points per category to ensure accuracy. Training datasets accuracy was
assessed against new testing datasets through computing the confusion
matrix for each model. In this work we looked at the “trainAccuracy”
parameter that describes how well the classifier was able to correctly
label resubstituted training data (i.e. data the classifier had already
seen). However, to get a true validation accuracy, we showed our three
classifiers a new ‘testing’ data and applied the classifiers to the new
testing data to assess the “errorMatrix” for this withheld validation
data. The accuracy values ranged from > 95% for CART and > 90% for
others, being applied on both Landsat 7 & 8.

The mangrove forests distribution following the three models are
shown using Landsat 7 & 8 in the Gurmabh Island (GI) (Figs. 3 and 4(a, b
and c), North Middle Tarut Bay (NMTB) (Figs. 3 and 4(e, f and g)), and
North Tarut Bay (NTB) (Figs. 3 and 4(, j and k) during 2018, respec-
tively. High resolution true color images from Google Map were in-
cluded for comparison (Figs. 3 and 4 (d, h and 1). The resulting pixel
coverage for mangrove forests based on three classifiers, after vegeta-
tion mask (NDVI > 0.15) was applied, is computed and presented for

each location. The areas of the classified mangroves (in hectares) for
Landsat 7 were: SVM (GI: 27.5, NMTB: 162, NTB: 159.3) > CART (GI:
25.7, NMTB: 140.6, NTB: 135.1) > Random Forest (GI: 24.6, NMTB:
97, NTB: 111.5) and for Landsat 8 were: SVM (GI: 38.9, NMTB: 180.6,
NTB: 268.7) > CART (GE: 34.8, NMTB: 151.6, NTB:
190.2) > Random Forest (GI: 31.6, NMTB: 150.5, NTB: 183.8). It is
clear that SVM classifier overestimated the distribution while RF un-
derestimated it. The three models successfully showed similar man-
grove distribution over the different locations and using Landsat 7 & 8
datasets, yet we believe that CART showed the most accurate pixel
coverage counting and best performance. Higher pixel coverage is ex-
pected from Landsat 8 images (Fig. 4) due to the absence of gaps ex-
hibited in Landsat 7 data (Fig. 3). The variance in the pixel coverage
following the three classifiers can be attributed to the sparse growth of
mangrove habitats along coastlines, as seen from the high resolution
true color composites, yet SVM failed to identify this sparsity and hence
overestimated and RF did the opposite. Given the CART model higher
performance and accuracy, it is now selected for the mangrove change
detection analysis.

Change detection analysis is performed between 2000 and 2010
using the CART classifier based images for Landsat 7, after sub-setting
our data to the previously mentioned five locations (Fig. 1) and
masking terrestrial vegetation, land and water for classification pur-
poses. Masking of terrestrial vegetation was crucial for the classification
accuracy and to avoid overestimation errors by the classifiers. Landsat 7
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Fig. 4. Supervised classification results of Landsat 8 image of 2018 for the mangrove forests (green area) and corresponding mangrove coverage (in hectares) using
CART (a, e, i), SVM (b, f, j), RF (c, g, k), compared with high resolution true colour Google Map image (d, h, 1), for GI (a-d), NMTB (e-h) and NTB (i-).
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Fig. 5. Mangrove forest distribution (green area) using the CART classifier applied on Landsat 7 year 2000. The text at the right panel lists the mangrove area for each
location (1-5). Refer to Fig. 1 for regions.
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Fig. 8. First two columns: Range of NDVI values of the samples for high-stand mangrove (a,b), submerged mangrove (d,e) and tidal flats (g,h) for low tides (blue) and
high tides (orange) of Landsat 7 and 8 images in Fig. 7. Third column: Range of SMRI values of the samples for high-stand mangrove (c), submerged mangrove (f) and

tidal flats (i) for Landsat 7 (blue) and Landsat 8 (orange) images in Fig. 7.

is specifically selected against Landsat 8 to look at the change starting
2000 rather than 2013. Figs. 5 and 6 shows that regions 1 (Manifah)
and 2 (Al-Khair) already with small mangroves fraction (0 and 2.3 ha)
in 2000 exhibits almost little to no change in 2010. It is noteworthy that
an artificial island was built in region 1, for ship docking and tourists
(Fig. 6, region 1). Alternatively, regions 3 (GI) and 5 (NMTB), with the
larger mangrove distribution (33.3 and 130.6 ha) in 2000, showed an
expected decline during 2010. This may be due to coastal developments
and surrounding human activities (Amin et al., 2019).

The observed increase of 0.21 km? over the mangrove habits in the
northern Tarut Bay and Tarut Island from 2.25 km? to 2.46 km? during
the period 2000-1010 matched the reported areal increase of 1.4 km?
observed from 1999 (4 km?) (Khan and Kumar, 2009) to 2011 (5.4 km?)
(Almahasheer et al., 2013) for the whole Tarut Bay. Moreover, the in-
crease of 1.14 km? between 2010 (2.46 km?) and 2018 (3.6 km?) also
agrees with the increasing trend of the Tarut Bay mangrove habitats
from 2011 to 2014 (Al-Ali et al., 2015). However, we believe that data
SLC gaps, shown as empty clear stripes, also played a role in this ob-
servation. As for region 4 (NTB) the mangrove coverage increased from
(94.4ha) in 2000 to (117.9ha) in 2010. It is highly likely that these
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classification results using gap-filled image by GEE mosaicking method
contributed to this increase in the mangroves distribution that was
validated with ground observations over some of the gap areas (Fig. 6,
region 4). It is clear that mangrove biomass and distribution in NTB has
unexpectedly increased from 94.4 to 117.9 to 190.2ha during 2000
(Fig. 5 region 4), 2010 (Fig. 6 region 4) and 2018 (Fig. 4i). Data filling
may have contributed to better accuracy; however, tide levels also af-
fect mangroves that is evident from their divergent spectral properties
in high/low water levels. This will be discussed further in the next
section.

3.3. Submerged mangrove detection

As mentioned above, tidal levels could have an impact on mangrove
mapping and detection. SMRI was generated from low and high tides on
the Abu Ali Island located in region 3 (Jubail), to use the unique
spectral signature of submerged mangroves forest to distinguish them
by different tide levels. The WorldView-2 high resolution images of Abu
Ali Island show mangrove forests in the south coast highlighted by the
red square (Fig. 7a). Fig. 7b shows the sample points for dense high-
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Fig. 9. (a) High-stand mangrove forests (green area) in high tide of Fig. 7e; SMRI indicated submerged mangrove forests (yellow area). (b) High-stand mangrove
forests (green area) in low tide of Fig. 7d; same submerged mangrove forests as Fig. 9a. (d) High-stand mangrove forests (green area) and in high tide of Fig. 7j; SMRI
indicated submerged mangrove forests (yellow area). (b) High-stand mangrove forests (green area) in low tide of Fig. 7i; same submerged mangrove forests as Fig. 9c.

The text at the very right panel lists the mangrove area.

stand mangroves in the south east corner (magenta points), tidal sub-
merged mangrove in the middle (orange points), and tidal flats (red
points). The mangroves total area, including tidal and non-tidal areas,
was calculated using the K-means classification method applied on
Fig. 7b and was found to be 19.28 ha (see green area in Fig. 7c). To
assess tidal impacts on mangrove distribution, the mean sea level (MSL)
data was also used, mentioned above in the data section. False color
composites for the region at low tides (MSL = -0.4m) and high tides
(MSL = 0.5) are shown in Fig. 7(d & e) for Landsat 7 and Fig. 7(i & j) for
Landsat 8, respectively. It is noteworthy that Landsat 7 SLC failure gaps
did not intercede the areas of mangrove forests in the case of Abu Ali
Island. Fig. 7(d & i) representing mangroves at low tides (marked as the
red vegetation) from Landsat 7 & 8 exhibits larger distribution than the
submerged mangroves that almost disappeared during the high tides
(Fig. 7(e &j). This indicates that change detection analysis of such area
could be dramatically altered if images are not compared at the same
water level. The NDVI images of low tides (Fig. 7f & k), and high tides
(Fig. 7g & 1) show that the NDVI index could be helpful to distinguish
high-stand mangrove from others, but fails to discriminate the sub-
merged mangroves and tidal flats in low tides, as well as submerged
mangrove and land. While in the SMRI images (Fig. 7h & m), sub-
merged mangroves could be seen as grey areas. The SMRI images in-
dicate that: 1) for non-tidal regions such as land or high-stand man-
grove, the SMRI value is close to 0; 2) for non-vegetation tidal flats
regions, the SMRI value could be very high above 1 (Fig. 7m), but also
could be closer to submerged mangrove. One can use the spectral
properties of submerged mangrove and tidal flats under high tides
condition to separate them.

Fig. 8 exhibits the ranges of NDVI and SMRI values of the samples
for high-stand mangrove (Fig. 8a-c), submerged mangrove (Fig. 8d-e)
and tidal flats (Fig. 8g-i) in Landsat 7&8 images displayed in Fig. 7. The
NDVI values in low tides are higher than those in high tides in general.
However, NDVI values of Landsat 8 images between tide levels are very
close as seen in Fig. 8b. In the Fig. 8f, the SMRI values have very similar
ranges (0.18 to 0.60 and 0.19 to 0.57) regardless of the different sa-
tellite images. This proves the robustness of SMRI as a submerged
mangrove detection method. However, the ranges of SMRI values for
Landsat 7 are overlapped between submerged mangroves and tidal flats
(Fig. 8f and 8i). This could be solved by applying the divergence of high
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tide NDVI values for submerged mangrove (-0.18 to 0.09 in Fig. 8e) and
tidal flats (—0.51 to —0.42) in Fig. 8h), which could be used to mask
out tidal flats from SMRI-indicated mangrove areas.

Fig. 9 shows the detection results for both high-stand mangrove as
green areas using K-means unsupervised method, and submerged
mangrove as yellow areas by choosing regions with SMRI values
(0.18-0.60 for Landsat 7, 0.19-0.57 for Landsat 8, then masking with
high tide NDVI > —0.2). The areas of submerged mangroves are 8.25
and 10.67 ha for Landsat 7 and Landsat 8 images, respectively. The
classified mangrove areas of Fig. 9(b & d) cover most of the targeted
mangrove areas shown in the background using the high resolution
WorldView-2 image. The summation of high-stand mangrove in high
tide and submerged mangrove areas (19.2 ha using Landsat 8, 18.42 ha
using Landsat 7) are very close to high resolution WorldView-2 image
result (19.28 ha), indicating that this approach could provide an ef-
fective estimate and addresses the tidal impact on mangrove mapping.

4. Conclusions

The spatial distribution and spatial-temporal changes of mangrove
forests in Arabian Gulf along the Saudi Arabia during the period of
2000 to 2018 were explored using large data sets and spatial analysis.
First, we compared the spectral reflectance signatures between identi-
fied mangrove forest and other coastal vegetation habitats (such as
seagrasses and saltmarshes) using Landsat 5&7&8 data. Mangrove ha-
bitat detection in the WAG was carried out through the evaluation of
the three widely-used mangrove classification methods, namely
Supported Vector Machine (SVM), Classification and Regression Trees
(CART) and Random Forest (RF). CART was validated as the most ef-
fective classifier (accuracy > 95%) for WAG mangrove detestation.
Later, we used the medium-resolution Landsat 7&8 images to build a
CART-based mangrove supervised classification model to obtain man-
grove areas and distributions for 2000, 2010 and 2018. With both
Landsat and the high resolution WorldView-2 images, the new SMRI
method was applied in the area of Abu Ali Islands with the usage of K-
means unsupervised method to identify and evaluate the biomass and
distribution of submerged mangroves in the tidal area. We investigated
the protocol to detect overall mangrove distribution from samples taken
from Abu Ali Island with indices SMRI and NDVI values generated from
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Landsat 7&8 images. By employing these two indices, there was a good
match between the estimates of the mangrove area to the south of Abu
Ali Island at 19.20 ha using Landsat 8 and 19.28 ha calculated from the
high resolution WorldView-2. This studies presents a unique approach
of SMRI to detect mangroves with historical Landsat images that has
historical record and can be used to address tidal impacts on mangrove
mapping and areas estimation over different locations, which could
achieve more accurate outcomes of mangrove detection within limited
usage of costly high resolution remote sensing imagery.
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