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Abstract

Let G be a graph. For two vertices u and v in G, we denote d(u, v) the

distance between u and v. Let j, k be positive integers with j > k. An L(j, k)-
labelling for G is a function f : V (G) → {0, 1, 2, · · ·} such that for any two

vertices u and v, |f(u) − f(v)| is at least j if d(u, v) = 1; and is at least k if
d(u, v) = 2. The span of f is the difference between the largest and the smallest

numbers in f(V ). The λj,k-number for G, denoted by λj,k(G), is the minimum
span over all L(j, k)-labellings of G. We introduce a new parameter for a tree

T , namely, the maximum ordering-degree, denoted by M(T ). Combining this
new parameter and the special family of infinite trees introduced by Chang and

Lu [3], we present upper and lower bounds for λj,k(T ) in terms of j, k, M(T ),
and ∆(T ) (the maximum degree of T ). For a special case when j > ∆(T )k, the
upper and the lower bounds are k apart. Moreover, we completely determine

λj,k(T ) for trees T with j > M(T )k.

1 Introduction

Motivated by the channel assignment problem (cf. Hale [14]), distance-two labelling

was introduced and formulated by Griggs and Yeh [13]. Suppose a number of trans-

mitters or stations are given. We ought to assign to each transmitter with a channel,

which is a non-negative integer, such that the interference is avoided. In order to re-

duce the interference, any pair of ‘close’ transmitters must receive different channels,
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and any pair of ‘very close’ transmitters (between which stronger interference might

occur) must receive channels that are at least two apart. The objective is to find a

valid assignment such that the span of the channels used is minimized.

Graphs are natural models for the above mentioned channel assignment prob-

lem. We represent each transmitter by a vertex, where each pair of very close trans-

mitters are connected by an edge between the corresponding vertices. A pair of close

transmitters are represented by vertices of distance two apart in the graph. Hence,

an L(2, 1)-labelling is defined as follows. For a given graph G, an L(2, 1)-labelling of

G is a function f : V (G) → {0, 1, 2, 3, . . .} such that the following hold, where d(u, v)

is the distance between u and v in G:

|f(u) − f(v)| >

{

2, if d(u, v) = 1;
1, if d(u, v) = 2.

The span of f , denoted by sp(f), is the difference of the largest and the smallest

labels assigned to vertices, that is, sp(f) = max{f(V )}−min{f(V )}. The λ-number

of G, denoted by λ(G), is the minimum span over all L(2, 1)-labellings for G. Since

Griggs and Yeh’s first paper [13], L(2, 1)-labelling has been studied extensively (cf.

most of the References).

For a more general setting, Griggs and Yeh [13] proposed the study of a labelling

f such that |f(u) − f(v)| > mi if d(u, v) = i for 1 6 i 6 N , where N is a positive

integer and m1 > m2 > . . . > mN > 0 are given numbers. If N = m1 = 1, f is

the same as an ordinary vertex-coloring. If N = 2 and m1 > m2 > 1 are integers,

then f is called an L(m1, m2)-labelling. That is, for given integers j > k > 1, the

L(j, k)-labelling of G is a function f on V (G) such that the following hold:

|f(u) − f(v)| >

{

j, if d(u, v) = 1;
k, if d(u, v) = 2.

The span of f is defined the same as an L(2, 1)-labelling. The λj,k-number of G,

denoted by λj,k(G), is the minimum span over all L(j, k)-labellings for G. An L(j, k)-

labelling f is called optimal if sp(f) = λj,k(G), and in this case f is also called a

λj,k-labelling. For the case k = 1, λj,1(G) is denoted by λj(G).

For a graph G, let ∆(G) denote the maximum degree of G. Georges and Mauro

[8] studied L(j, k)-labellings for general values of j and k. Among other results

shown in [8], there are bounds of λj,k(G) for all graphs G, in terms of i, j and
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∆(G), complete solutions (for all j > k > 1) of λj,k(G) for special families of graphs

including paths and cycles, and partial solutions on the products of paths. Molloy

and Salavatipour [17] gave an upper bound of λj,k(G) for planar graphs G. The λj-

number was investigated by Chang el al. [5]. For more results on L(j, k)-labelling of

graphs, the reader is referred to the survey articles [1, 19].

In [9], Georges and Mauro derived the λj,k-number for the infinite regular tree.

In addition, for x = j/k, the authors introduced a rational variation λx(G) of λj,k(G),

and proved that λx(G) is a continuous function, for a fixed graph G. Recently, an

even more general distance two labelling using real numbers as labels was introduced

and studied by Griggs and Jin [11, 12].

For a graph G with maximum degree ∆(G), it is clear that λj,k(G) > j +

(∆(G) − 1)k. The graphs achieving this bound are called λj,k-minimal. Chang and

Lu [3] studied the structure of λj,k-minimal graphs. Using a special family of infinite

trees, the authors characterized the λj,k-minimal trees [3].

The aim of this article is to investigate the λj,k-number for trees T in general.

In Section 2, we introduce a new parameter for trees called the maximum ordering-

degree, denoted as M(T ). Combining this new parameter with the special family of

infinite trees introduced in [3], in Section 2, we establish a general upper bound of

λj,k(T ) for trees, in terms of i, j, and M(T ). In Section 3 we also use M(T ) to prove

a key lemma which is utilized, in Section 4, to show a lower bound of λj,k(T ) in terms

of M(T ), provided j > ∆(T )k. Moreover, we give complete solutions of λj,k(T ) for

trees with j > M(T )k.

We make a note here about the complexity problem of determining the λj,k-

number for trees. Chang and Kuo [4] proved that for a tree T with maximum degree

∆(T ), λ(T ) ∈ {∆(T ) + 1, ∆(T ) + 2}, and there is a polynomial-time algorithm to

determine the exact value of λ(T ). Later on, an extended and similar result for

λj,1(T ), j > 1, was shown by Chang et al. [4]. The problem, however, becomes more

complicated for k > 1. Fiala et al. [6] showed that determining the value of λj,k(T )

is NP-complete unless j is a multiple of k, in which it can be solved polynomially.

Throughout the article, we denote T as a tree with maximum degree ∆, unless

otherwise indicated.
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2 Upper Bound for Trees

We introduce the maximum ordering-degree for trees and the infinite tree used by

Chang and Lu [3]. Combining these two notions, we then derive an upper bound of

the λj,k-number for all trees (Theorem 7).

For the special case k = 1, the known upper and lower bounds for the λj-number

of trees are due to Griggs and Yeh [13] for j = 2, and due to Chang et al. [5] for

j > 2.

Theorem 1 [5] Let T be a tree with maximum degree ∆. Then ∆ + j − 1 6 λj(T ) 6

min{2j + ∆ − 2, 2∆ + j − 2}. Moreover, both the lower and the upper bounds are

attainable.

For the general case 1 6 k 6 j, the following property, observed in [3], follows

naturally from the definition.

Proposition 2 [3] For any positive integers j > k and any graph G of maximum

degree ∆, we have λj,k(G) > j + (∆− 1)k. Moreover, if the equality holds and j > k,

then for any λj,k(G)-labelling of G, each vertex with degree ∆ must be labelled by 0

or j + (∆ − 1)k.

A λj,k-minimal tree is a tree T with λj,k(T ) = j + (∆ − 1)k. The infinite tree

introduced in [3] is defined as follows. For any positive integer M , an [M ]-sequence

is a sequence (b0, b1, . . . , bt) for some t > 0, so that all the following hold:

(S1) b0 = 0.

(S2) 0 6 bi 6 M − 1 for all i = 1, 2, . . . , t.

(S3) bi > bi−1 and bi > bi+1 for all odd i ∈ {1, 2, . . . , t}.

(S4) bi 6= bi+2 for all i = 0, 1, . . . , t − 2.

For a positive integer M , the infinite tree TM has the vertex set of all [M ]-

sequences where two vertices (b0, b1, . . . , bt) and (c0, c1, . . . , ct′) are adjacent if |t−t′| =

1 and bi = ci for 0 6 i 6 min{t, t′}.

Below is a characterization of the λj,k-minimal trees for large values of j.
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Theorem 3 [3] Let T be a tree of maximum degree ∆. If j, k are integers with

j > ∆k, then T is λj,k-minimal if and only if T is a subtree of T∆.

The following result was proved implicitly in [3].

Theorem 4 [3] For any positive integer M and j > k, ∆(TM ) = M and λj,k(TM) =

j + (M − 1)k. Consequently, TM is λj,k-minimal for any j > k.

In the following, we introduce the new parameter maximum ordering-degree of

a tree T . Let v be a vertex in T of degree n. The neighborhood of v, denoted by N(v),

is the set of all vertices adjacent to v. The set N(v) ∪ {v} is denoted by N[v]. The

neighborhood degree sequence of v, called ND-sequence for brevity, is a non-increasing

degree sequence (h0(v), h1(v), . . . , hn−1(v)) of N(v). That is, we line up the vertices

of N(v) by (v0, v1, v2, · · · , vn−1) where d(v0) > d(v1) > · · · > d(vn−1), and record their

degrees into the ND-sequence with d(vi) = hi(v). We will simply use (h0, h1, · · · , hn−1)

when v is understood in the context. The maximum ordering-degree of v, denoted by

m(v), is defined as

m(v) = max{hi + i | 0 6 i 6 d(v) − 1}.

The maximum ordering-degree of T , denoted by M(T ), is defined as

M(T ) = max{m(v) | v ∈ V (T )}.

For instance, the maximum ordering-degree for K1,∆ (a star with ∆ leaves) is ∆.

Throughout the article, we shall simply denote M(T ) by M, when T is clear

in the context.

Lemma 5 Let T be a tree and v a vertex in T with degree n. Let (d0, d1, d2, · · · , dn−1)

be any ordering of the degrees of N(v) and let (h0, h1, · · · , hn−1) be the ND-sequence

of v. Then max{di + i | 0 6 i 6 n − 1} > m(v).

Proof. Let m(v) = hj + j for some 0 6 j 6 n − 1. Since {d0, d1, d2, . . . , dn−1} =

{h0, h1, · · · , hn−1} and h0 > h1 > h2 > . . . > hn−1, there exists some t > j such that

hj 6 dt. Hence, max{di + i | 0 6 i 6 n − 1} > dt + t > hj + j = m(v). �

The next result emerges directly from the definition of M(T ).
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Lemma 6 Let T be a tree with maximum degree ∆ and maximum ordering-degree

M. Then ∆ 6 M 6 2∆ − 1.

For two graphs G and H, a graph homomorphism from G to H is an edge-

preserving function from V (G) to V (H). If there exists an injective homomorphism

from G to H, then by composition of functions, one gets λj,k(G) 6 λj,k(H).

We now show a general upper bound of the λj,k-number for trees.

Theorem 7 Let T be a tree with maximum ordering-degree M. Let j, k be integers

with j > k. Then λj,k(T ) 6 j + Mk.

Proof. By Theorem 4, it suffices to find an injective homomorphism from V (T )

to V (TM+1). Let v be a vertex with m(v) = M. Suppose v has degree n. Let

N(v) = {v0, v1, · · · , vn−1} with ND-sequence (h0, h1, · · · , hn−1), where hi is the degree

of vi. We define a homomorphism by the following recursive process which labels each

vertex in V (T ) with an [M + 1]-sequence.

Initially, all the vertices are unlabelled. Label v by (0) and its neighbors vi by

(0,M− 1− i), 0 6 i 6 n− 1. Suppose a vertex u has been labelled by (b0, b1, · · · , bt)

for some t > 1. We next label all the unlabelled neighbors of u (if there exists any).

Note, by our labelling scheme, there is only one neighbor of u that has been labelled.

Let {ui | 0 6 i 6 d(u) − 2} be the set of unlabelled neighbors of u, where d(ui) = di

and di > di+1. Observe, di 6 hi(u). We label ui by (b0, b1, · · · , bt, b
(i)
t+1) according to

the following:

If t is even, let

b
(i)
t+1 =

{

M− i, if M− i > bt−1 + 1;
M− i − 1, otherwise.

So b
(i)
t+1 6= bt−1 and b

(i)
t+1 6 M, if t is even.

If t is odd, let

b
(i)
t+1 =

{

i, if i 6 bt−1 − 1;
i + 1, otherwise.

So b
(i)
t+1 6= bt−1 and b

(i)
t+1 6 i + 1 6 d(u) − 1 6 ∆(T )− 1 6 M− 1, if t is odd.

Clearly, all the labels satisfy conditions (S1), (S2) and (S4) for an [M + 1]-

sequence. We check (S3). As di 6 hi(u), we have

max{di + i} 6 max{hi(u) + i} 6 m(u) 6 M.
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Hence, di 6 M − i for every i. Let w be a vertex adjacent to ui and labelled by

(b0, b1, · · · , bt, b
(i)
t+1, bt+2). If t is even, then bt+2 6 di − 1 6 M − i − 1 6 b

(i)
t+1. If t is

odd, then bt+2 > M − 1 − (di − 2) > i + 1 > b
(i)
t+1. This verifies (S3). Hence, the

mapping by the labelling is well-defined. Moreover, by definition it is clear that the

mapping is injective and edge-preserving. This completes the proof. �

3 Key Lemma

The aim of this section is to establish Lemma 10, which will be used in the next

section. Let T be a tree with maximum degree ∆ and maximum ordering-degree

M(T ) > ∆. Let v be a vertex in T with m(v) > ∆ and let the ND-sequence of v be

(h0, h1, · · · , hn−1), where n = deg(v). In the following we define a recursive operation,

by first lining up the neighbors of v by N(v) = (v0, v1, v2, · · · , vn−1) where d(vi) = hi.

The recursive process begins with two lists, (v0, v1, · · · , vn−1) and (h0, h1, · · · ,

hn−1). In each step we delete one vertex vt and its corresponding ht from the lists,

where the value of t is determined by the function σ introduced below. The new list

of hi’s remains in non-increasing order.

Here is the precise definition of the process. Initially, let v
(0)
i = vi and h

(0)
i = hi

for 0 6 i 6 n − 1, and let m(0)(v) = m(v).

For q > 1, if m(q−1)(v) 6 ∆ then stop; else m(q−1)(v) > ∆ then define

σ(q) = min{i | h
(q−1)
i + i = m(q−1)(v), 0 6 i 6 n − q}, and



















v(q) = v
(q−1)

σ(q) and h(q) = h
(q−1)

σ(q) ,

v
(q)
i = v

(q−1)
i and h

(q)
i = h

(q−1)
i , if 0 6 i 6 σ(q)− 1,

v
(q)
i = v

(q−1)
i+1 and h

(q)
i = h

(q−1)
i+1 , if σ(q) 6 i 6 n − q − 1,

m(q)(v) = max{h(q)
i + i | 0 6 i 6 n − q − 1}.

In the following, we remark some properties for the above recursive process. In

particular, we show that the process stops at some point.

Proposition 8 Let T be a tree with maximum degree ∆ < M(T ). Let v be a vertex

of degree n and m(v) > ∆. Let p = m(v) − ∆. For the process defined above, the

following hold for any 1 6 q 6 p.

(1) σ(q) > 1.

(2) h
(q)
0 , h

(q)
2 , . . . , h

(q)
n−q−1 is a non-increasing sequence.
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(3) h
(q−1)

σ(q)−1 = h
(q−1)

σ(q) .

(4) m(q)(v) = m(q−1)(v) − 1 = m(v) − q. Consequently, the process stops at q =

m(v)− ∆ = p.

(5) σ(q) < σ(q − 1). Consequently, h(q) > h(q−1) for 2 6 q 6 p.

(6) v
(q)
i = vi for all 0 ≤ i ≤ σ(q)− 1.

Proof. To show (1), suppose σ(q) = 0 for some 1 6 q 6 p − 1. Then by definition,

m(q−1)(v) = h
(q−1)
0 + 0 = h

(q−1)
0 6 ∆, a contradiction.

(2) follows since initially (h0, h1, · · · , hn−1) is in a non-increasing order, and the

ordering is kept in each step.

To show (3), by (1) and (2) we get h
(q−1)
σ(q)−1 > h

(q−1)
σ(q) . Assume to the contrary,

h
(q−1)
σ(q)−1 > h

(q−1)
σ(q) . Then h

(q−1)
σ(q)−1 + σ(q)− 1 > h

(q−1)
σ(q) + σ(q), contradicting the choice of

σ(q).

To show (4), let m(q−1)(v) = x and m(q)(v) = x′. By definition, x′ 6 x − 1.

By (3), x′ > x − 1. Finally, (5) follows by (3) and (4); (6) follows by (5) and the

definition of v(q). �

The next result follows directly from the definition of an L(j, k)-labelling.

Lemma 9 Let v be a degree n vertex in G. If f is an L(j, k)-labelling for G such

that f(w) < f(v) < f(u) for some w, u ∈ N(v), then sp(f) > 2j + (n − 2)k.

Lemma 10 Let T be a tree with maximum degree ∆. Suppose v is a vertex of T

with degree n, m(v) = M(T ), and d(v, u) 6 2 for all vertex u 6= v in T . Let the

ND-sequence of v be (h0, h1, h2, · · · , hn−1), p = m(v)− ∆, and let h(q), 1 6 q 6 p, be

defined as in the above process. Then all the following hold.

(a) λj,k(T ) 6 j + (m(v)− 1)k for all j > k.

(b) If m(v) = ∆, then λj,k(T ) = j + (∆ − 1)k.

(c) If m(v) > ∆, then λj,k(T ) = j + (m(v)− 1)k if j > ∆k; otherwise,

λj,k(T ) >































min{j + (m(v)− 1)k, 2j + (min{n, h(1)} − 2)k},
if (m(v)− h(1))k 6 j < ∆k;

min{j + (m(v)− q − 1)k, 2j + (min{n, h(q+1)} − 2)k},
if (m(v)− h(q+1) − q)k 6 j < (m(v)− h(q) − q + 1)k,
for some 1 6 q 6 p − 1;

min{j + (∆ − 1)k, 2j + (n − 2)k}, if j < (∆ − h(p) + 1)k.
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(d) If n > h(i) for some i > 1, then the conclusion (in-equality) in (c) becomes an

equality for j > (m(v)− h(i) − i + 1)k. In particular, if n > h(p) then the above

determines the value of λj,k(T ) for j > (∆ − h(p) + 1)k.

Proof. Let N(v) = {v0, v1, · · · , vn−1} with d(vi) = hi and N(vi) = {v, u(i,1), u(i,2),

· · · , u(i,hi−1)} for 0 6 i 6 n − 1. To show (a), we give an L(j, k)-labelling g for T by:

g(v) = j+(m(v)−1)k, g(vi) = ik for 0 6 i 6 n−1, and g(u(i,d)) = j+(m(v)−1−d)k.

It is easy to see that g is an L(j, k)-labelling for T .

If m(v) = ∆, then (b) follows from Proposition 2 and (a).

Suppose m(v) > ∆. Let f be an optimal L(j, k)-labelling of T . Since all the

neighbors of v must receive different labels, we can line up the neighbors of v by

u0, u1, · · · , un−1 so that their labels are in an increasing order. That is,

f(ui) > f(ui−1) + k for 1 6 i 6 n − 1.

Let di denote the degree of ui, 0 6 i 6 n−1. (Note, (d0, d1, · · · , dn−1) is not necessarily

an ND-sequence.) Hence, f(ui) > f(u0) + ik > ik for all i = 0, 1, · · · , n − 1.

A vertex w is called straight if f(w) > f(w′) for all w′ ∈ N(w), or f(w) < f(w′)

for all w′ ∈ N(v). There are three cases to consider.

Case 1. v is not straight. By Lemma 9,

sp(f) > 2j + (n − 2)k. (3.1)

Case 2. Every x ∈ N[v] is straight. We claim:

sp(f) > j + (m(v)− 1)k. (3.2)

By symmetry, we assume without loss of generality f(v) > f(ui) for all 0 6 i 6 n−1.

For any 0 6 i 6 n − 1, since ui is straight and v ∈ N(ui), we get f(ui) < f(z)

for all z ∈ N(ui). For 0 6 i 6 n − 1, let fi = max{f(z) | z ∈ N(ui)}. Then,

fi > j + (di − 1)k + f(ui) > j + (di − 1 + i)k. So,

sp(f) > max{fi | 0 6 i 6 n − 1}
> j + (max{di + i | 0 6 i 6 n − 1} − 1)k
> j + (m(v)− 1)k.

The last inequality follows by Lemma 5. This proves (3.2).
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Case 3. v is straight, but ui is not for some i. We claim (3.3) or (3.4) holds:

sp(f) > max{2j, j + (m(v)− 1)k}, (3.3)

sp(f) > min16i6p

{

max{2j + (h(i) − 2)k, j + (m(i)(v)− 1)k}
}

. (3.4)

Partition N(v) into two parts, A and S, where S consists of all the straight vertices

in N(v), and A = N(v)− S. Then A 6= ∅. Let A = {u1, u2, · · · , ux} and d(ui) = ti for

1 6 i 6 x. Let TA and TS be two induced subtrees of T where V (TA) = ∪w∈AN[w]

and V (TS) = ∪w∈SN[w]. Note, v ∈ V (TA) ∩ V (TS). Let g1 and g2 be the restrictions

of f to V (TA) and V (TS), respectively. Then, sp(f) > max{sp(g1), sp(g2)}.

Let h∗ = max{t1, t2, · · · , tx}. By Lemma 9, sp(g1) > 2j + (h∗ − 2)k. For TS, by

the same discussion in Case 2, sp(g2) > j+(m′(v)−1)k, where m′(v) is the maximum

ordering-degree of v restricted to the subtree TS. Hence,

sp(f) > max{2j + (h∗ − 2)k, j + (m′(v) − 1)k}. (3.5)

First, assume m′(v) > ∆. Let q = m(v) − m′(v). So, 0 6 q 6 m(v) − ∆.

If q = 0, as A 6= ∅, we have h∗ − 2 > 0, hence (3.3) holds. Suppose q > 1. By

Proposition 8 (4), m(q)(v) = m(v)− q = m′(v). Therefore, to prove (3.4), by (3.5) it

suffices to verify the following:

max{2j + (h∗ − 2)k, j + (m′(v)− 1)k} > max{2j + (h(q) − 2)k, j + (m(q)(v)− 1)k},

which is equivalent to h∗ > h(q). Assume to the contrary, h∗ < h(q). By Proposition 8

(5)(6), v(q) = v
(q−1)
σ(q) = vσ(q). Hence, h(q) = h

(q−1)
σ(q) = hσ(q). Since h∗ is the largest degree

in V (TA) − {v} and as h∗ < h(q), we conclude that the vertices vi with 0 6 i 6 σ(q)

are all in TS. This implies that m′(v) > hσ(q) + σ(q) = h
(q−1)
σ(q) + σ(q) = m(q−1)(v) =

m(q)(v) + 1 > m(q)(v), a contradiction. Hence, (3.4) holds.

Next, assume m′(v) < ∆. Since f is optimal, sp(f) > j + (∆ − 1)k. We can

replace m′(v) in (3.5) by ∆. Let q = m(v)−∆. A similar proof as the above will lead

to the same conclusion (where m(q)(v) = m(v)− q = ∆ > m′(v)).

Now, to get a lower bound for λj,k(T ), it suffices to get the least bound among

the ones in (3.1), (3.2), (3.3), and (3.4). Notice that (3.2) is weaker than (3.3), so we

shall only consider (3.1), (3.2) and (3.4).

Assume j > ∆k. Then j + (m(v)− 1)k 6 2j + (h(1) − 2)k, since by definition

h(1) + n − 1 > h(1) + σ(1) = m(v) and because n 6 ∆. By the fact that h(1) 6

10



h(2) 6 · · · 6 h(p), we conclude that the minimum among (3.1), (3.2), and (3.4) gives

λj,k(T ) > j + (m(v)− 1)k, for j > ∆k. Hence, by (a), λj,k(T ) = j + (m(v)− 1)k, for

j > ∆k.

Assume j < ∆k. By Proposition 8, we have

j + (m(v)− 1)k > j + (m(1)(v)− 1)k > · · · > j + (m(p)(v)− 1)k = j + (∆− 1)k, and

2j + (h(1) − 2)k 6 2j + (h(2) − 2)k 6 · · · 6 2j + (h(p) − 2)k. (3.6)

To find the minimum among (3.1), (3,2) and (3.4), we consider different values of j.

Notice that

2j + (h(x)(v) − 2)k > j + (m(x)(v) − 1)k ⇐⇒ j > (m(x−1)(v)− h(x)(v))k. (3.7)

Assume (m(v)− h(1))k 6 j < ∆k. Then

max{2j + (h(1) − 2)k, j + (m(v)− 2)k} = 2j + (h(1) − 2)k.

Therefore the least bound among (3.1), (3.2) and (3.4) gives

λj,k(T ) > min{j + (m(v)− 1)k, 2j + (h(1) − 2)k, 2j + (n − 2)k}.

Hence, the result for the case (m(v) − h(1))k 6 j < ∆k follows. Similarly, by (3.6)

and (3.7) the remaining cases in (c) can be obtained; we should leave the details to

the reader.

Now we prove (d). Assume j > (m(v) − h(q) − q + 1)k, and n > h(q) for some

1 6 q 6 p. Then 2j + (h(q) − 2)k > j + (m(q) − 1)k, and n > h(x) for 1 6 x 6 q. For

any 1 6 x 6 q, let

Qx = max{2j + (h(x) − 2)k, j + (m(x)(v)− 1)k}.

To prove (d), it suffices to find L(j, k)-labellings g and f for T with spans Qx and

j + (m(v)− 1)k, respectively.

Let g(v) = Qx. For 0 6 i 6 n − x − 1, let g(v
(x)
i ) = ik and g(u(i,d)) =

j + (m(x)(v) − 1 − d)k, where u(i,d) ∈ N(v
(x)
i ) − {v} and 1 6 d 6 h

(x)
i − 1. For

1 6 i 6 x, let g(v(i)) = Qx − j − (i − 1)k and g(w
(i)
d ) = Qx − dk for d 6 i − 1 or

g(w
(i)
d ) = Qx−2j− (d−1)k for d > i, where w

(i)
d ∈ N(v(i))−{v} and 1 6 d 6 h(i)−1.

Let f(v) = j + (m(v) − 1)k. For 0 6 i 6 n − 1, let f(vi) = ik and label the

unlabelled neighbors of vi by j + (m(v)− 1 − l)k, l = 1, · · · , hi − 1.

It is easy to see that both g and f are L(j, k)-labellings for T , with the desired

spans. This completes the proof. �
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4 Lower Bound and Large Values of j

We use the maximum ordering-degree of a tree T to develop a lower bound of λj,k(T )

for j > ∆(T )k. Moreover, we completely determine the value of λj,k(T ) for trees T

with j > M(T )k.

Theorem 11 Let T be a tree with maximum degree ∆ and maximum ordering-degree

M. If j > ∆k, then λj,k(T ) > j + (M− 1)k.

Proof. If M = ∆, the result holds by Proposition 2. Assume M > ∆. Let v be

a vertex with degree n and m(v) = M. Let H be the subtree of T induced by v

and all the vertices within distance 2 from v. Since j > ∆k, by Lemma 10, we have

λj,k(H) = j + (M− 1)k. Hence λj,k(T ) > j + (M− 1)k. �

By Theorems 4, 7 and 11, we obtain

Corollary 12 Let T be a tree with maximum degree ∆ and maximum ordering-degree

M. Assume j and k are integers with j > ∆k. Then j+(M−1)k 6 λj,k(T ) 6 j+Mk.

Moreover, if T is a subtree of TM, then λj,k(T ) = j + (M− 1)k.

It was proved by Georges and Mauro [8] that for any graph G, λj,k(G) = αj+βk

for some non-negative integers α and β. By Corollary 12, if T is a tree of maximum

degree ∆ and maximum ordering-degree M, and if j > ∆k, then there only three

possible values for λj,k(T ). Precisely, if j > ∆k, then

λj,k(T ) ∈ {j + (M− 1)k, βk, j + Mk},

where M is the maximum ordering-degree of T , and β is a non-negative integer with

j + (M− 1)k 6 βk 6 j + Mk.

Theorem 13 Let j, k, M be positive integers with with j > Mk. For any graph G,

the following are equivalent:

(1) λj,k(G) < j + Mk.

(2) There exists a λj,k-labelling g for G such that for any vertex v in G, g(v) is of

the form avj + bvk with av ∈ {0, 1} and bv ∈ {0, 1, · · · , M − 1}. Moreover, the

following hold:
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(D1) If dG(u, v) = 1, then au 6= av. If au = 0 and av = 1, then bu 6 bv.

(D2) If dG(u, v) = 2, then au = av and bu 6= bv.

(3) λj,k(G) 6 j + (M − 1)k.

Proof. It is enough to show (1) ⇒ (2). Assume λj,k(G) < j + Mk. Let f be a

λj,k-labelling for G. For every vertex v, write f(v) = avj + bvk + rv, where av, bv, rv

are non-negative integers satisfying 0 6 bvk + rv < j and 0 6 rv < k.

Since j > Mk and λj,k(G) < j + Mk, we have av = 0 or 1. We claim that

0 6 bv 6 M − 1. If av = 1, this is obviously true. Assume av = 0. Choose a vertex u

adjacent to v. (If v is isolated, let f(v) = 0.) By the assumption that f(v) = bvk < j,

it must be f(v) < f(u), and so f(v) 6 f(u) − j < Mk, implying bv 6 M − 1.

Define a function g on V (G) by g(v) = avj + bvk. It suffices to show that g

is an L(j, k)-labelling for G, and g satisfies (D1) and (D2). Suppose u and v are

adjacent vertices in G. As |f(u)− f(v)| > j > Mk, it must be the case that au 6= av.

Without loss of generality, assume au = 0 and av = 1. Then f(u) < f(v). So we have

f(u) 6 f(v)−j, implying buk+ru 6 bvk+rv. As buk 6 buk+ru 6 bvk+rv < (bv+1)k,

we get bu 6 bv. Hence, g(u) 6 g(v)− j, and (D1) holds.

Next, suppose dG(u, v) = 2. Choose a vertex w adjacent to both u and v. Then

au 6= aw and aw 6= av, implying au = av. As |f(u) − f(v)| > k, we have bu 6= bv (so

(D2) holds) and |g(u)− g(v)| > k. This verifies that g is a λj,k-labelling for G, which

satisfies (D1) and (D2). �

Let T be a tree with maximum ordering-degree M. Let j > Mk. Because

M(T ) > ∆(T ), by Theorem 13 and Corollary 12, we have λj,k(T ) ∈ {j + (M −

1)k, j + Mk}. Indeed, the value of λj,k(T ) can be completely settled as follows.

Theorem 14 Let T be a tree with maximum ordering-degree M. If j > Mk, then

λj,k(T ) =

{

j + (M− 1)k, if T is a subtree of TM;
j + Mk, otherwise.

Proof. Assume j > Mk. By Theorem 13 and Corollary 12, it is enough to show

that if λj,k(T ) = j + (M− 1)k, then T is a subtree of TM.

Suppose λj,k(T ) = j + (M− 1)k. By Theorem 13, T has a λj,k-labelling g such

that for any vertex v, g(v) = avj + bvk where av ∈ {0, 1} and bv ∈ {0, 1, · · · , M − 1}

satisfying conditions (D1) and (D2).

13



Let v be a vertex with m(v) = M. Since g is a λj,k-labelling, there exists a

vertex v0 such that g(v0) = 0. To prove that T is a subtree of TM, it suffices to find

an injective homomorphism from T to TM.

For any vertex u in T , there is a unique path from v0 to u. Denote this path

by P : v0, v1, · · · , vm = u. According to (D1) and (D2), (bv0
, bv1

, · · · , bvm
) is an [M]-

sequence. Define a function φ : V (T ) → V (TM) by φ(u) = (bv0
, bv1

, · · · , bvm
). Clearly,

φ is an injective homomorphism. Hence T is a subtree of TM. �
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