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Abstract 
A composition of n is an ordered collection of one or more positive integers 
whose sum is n.  The number of summands is called the number of parts of 
the composition.  A palindromic composition or palindrome is a composi-
tion in which the summands are the same in the given or in reverse order.  
Compositions may be viewed as tilings of 1-by-n rectangles with 1-by-i 
rectangles, 1 i n≤ ≤ .  We count the number of compositions and the 
number of palindromes of n that do not contain any occurrence of a 
particular positive integer k. We also count the total number of occurrences 
of each positive integer among all the compositions of n without 
occurrences of k. This counting problem corresponds to the number of 
rectangles of each allowable size among the tilings of length n without 1-
by-k tiles. Finally we count the number of compositions without k having a 
fixed number of parts, and explore some patterns involving the number of 
parts in compositions without k. 
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1.    Introduction 
A composition of n is an ordered collection of one or more positive integers 

whose sum is n.  The number of summands is called the number of parts of the 
composition. A palindromic composition or palindrome is a composition in 
which the summands are the same in the given or in reverse order.  
Compositions may be viewed as tilings of 1-by-n rectangles with 1-by-i 
rectangles, 1 i n≤ ≤ . In this view, a palindromic composition is one 
corresponding to a symmetric tiling. Because of the relation of compositions to 
tilings, we sometimes refer to a composition of n as a composition of length n. 

Grimaldi [5] explores the question of how many compositions of n exist 
when no 1’s are allowed in the composition. In [4], the authors explore the 
question of how many compositions of n exist when no 2’s are allowed in the 
composition.  In this paper we explore the general question of how many com-
positions of n exist when no k’s are allowed in the composition.  Related to this 
question we will also explore how many of these compositions are palindromes. 

We count the number of compositions and the number of palindromes 
without k, as well as the total number of occurrences of each positive integer 
among all the compositions of n with no k’s. The preceding two counting 
problems correspond respectively to the number of 1-by-n tilings and the total 
number of tiles of a specific size used among all the tilings of length n without 
1-by-k tiles. Finally, we explore particular patterns involving the number of 
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parts among all the compositions of n without occurrences of k. We will use the 
following notation. 
 

( )C n           is the number of compositions of n  
ˆ( , )C n k       is the number of compositions of n with no k’s 
ˆ( , )P n k       is the number of palindromes of n with no k’s  

( , )x n i         is the number of occurrences of i among all compositions of n 
ˆ( , , )x n i k     is the number of occurrences of i among all compositions of n 

                   with no k’s 
( )jC n         is the number of compositions of n with j parts 

ˆ( , )jC n k      is the number of compositions of n with j parts and no k’s. 
 

2.    The number of compositions without k’s. 
In the following theorem we will present three different ways to generate 

the compositions without k’s, each of which gives rise to a different formula. 
 
Theorem 1.  The number of compositions of n without k’s is given by 
       ˆ ˆ ˆ ˆ( , ) 2 ( 1, ) ( ( 1), ) ( , )C n k C n k C n k k C n k k= ⋅ − + − + − −   for 1n k≥ +          (1) 
or 

                            
1

0

ˆ ˆ ˆ( , ) ( , ) ( , )
n

i
C n k C i k C n k k

−

=

 = − − 
 
∑  for 1n ≥                         (2) 

or 

                      
1

ˆ ˆ ˆ( , ) ( , ) ( 2 , )
k

i
C n k C n i k C n k k

=

 = − + − 
 
∑  for 1n k≥ + ,                (3) 

with initial conditions ˆ( , ) 0 for 0,C i k i= <  1ˆ( , ) 2  for 0 ,iC i k i k−= < <  ˆ( , )C k k   
12 1k−= − , and we define C(0, ˆ k ) = 1. The generating function for ˆ( , )C n k  is 

given by 1
0

1ˆ( , )
1 2

n
k k

n

tC n k t
t t t

∞

+
=

−
⋅ =

− + −
∑ . 

 
Proof:  The initial conditions follow from the fact that ˆ( , ) ( )C n k C n=  for 
n k< , as no forbidden k’s can occur in the compositions of n, and 

1( ) 2nC n −= (see for example [6], p. 33). If n k= , then there is one composition 

of n consisting of just k, which has to be eliminated, hence ˆ( , )C k k =  
1( ) 1 2 1.kC k −− = −  We now derive the individual formulas. 
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To show Eq. (1), we generate the compositions of n without k’s recursively 
by the following process: to any such composition of 1n − , one can add a 1 or 
increase the last summand by 1.  However, this process needs two corrections. 
First, we must separately generate those compositions that end in 1k + , since 
they will not be generated by this recursive method. They come from adding a 

1k +  to compositions of ( 1)n k− + .  Secondly, we must subtract the compo-
sitions of 1n −  that initially ended in k-1, since they would now end in k under 
this process.  The number of such compositions corresponds to compositions of 
length n k− . 

Eq. (2) follows readily from the following alternate creation method: 
append a 1 to all allowable compositions of 1n − , append a 2 to those of 2n − , 
and in general, appending j to all allowable compositions of n j− except when 
j k= . This method gives rise to the second formula.  

Note that in the summation of Eq. (2), the number of terms being added 
increases as n increases.  A third way of generating the compositions of n 
without k’s requires only a fixed number of summands.  It is useful to express 
this method in terms of tilings.  One can either add a tile of length i to any 
composition of length n i−  for 1, , 1i k= −…  or extend the last tile in any 
composition of length n k−  by k units. Because none of the tilings used in this 
process end in k, we need to add in those that will not be created by the 
extension methods, namely the ˆ( 2 , )C n k k−  tilings that now end with a tile of 
length 2k, which leads to Eq. (3). 

Finally, to derive the generating function 
0

ˆ( ) ( , ) ,n
C

n
G t C n k t

∞

=

= ⋅∑ we 

multiply the Eq. (3) by nt , then sum over 1.n k≥ + Thus, 

        
1 1 0 1

ˆ ˆ ˆ( , ) ( , )  ( 2 , )  .
k

n n n

n k n k i n k
C n k t C n i k t C n k k t

∞ ∞ ∞

= + = + = = +

 
⋅ = − ⋅ + − ⋅ 

 
∑ ∑ ∑ ∑          (4) 

Factoring out appropriate powers of t, then re-indexing the infinite series and 
expressing the resulting series in terms of ( )CG t reduces Eq. (4) to  

2

0 1 0

ˆ ˆ( ) ( , ) ( ) ( , ) ( )
k k k i

n i n k
C C C

n i n
G t C n k t t G t C n k t t G t

−

= = =

 
− ⋅ = − ⋅ + 

 
∑ ∑ ∑ . 

Collecting the terms containing ( )CG t  and then combining terms according to 
powers of t yields  

2

1 0 1 0

1

0 1

ˆ ˆ( ) 1 ( , ) ( , )

ˆ ˆ( , ) ( , ) .

k k k k i
i k n n i

C
i n i n

jk
j

j i

G t t t C n k t C n k t

t C j k C i k

−
+

= = = =

−

= =

 
− − = ⋅ − ⋅ 

 
 

= − 
 

∑ ∑ ∑∑

∑ ∑
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We now look at the summands on the right hand side. For 0,j = we get 
0 ˆ(0, ) 1t C k = . For ,j k=  we get 

1
1

ˆ ˆ ˆ( ( , ) ( , )) ( (0, ))kk k k
i

t C k k C i k t C k t−

=
− = − = −∑  

using Eq. (2). If 0 j k< <  then 1

1
ˆ ˆ( , ) ( , )j

i
C j k C i k−

=
= ∑ , thus all these powers of 

t have zero factors. Thus, ( )2

1
( ) 1 1

k i k k

C i
G t t t t

=
− − = −∑ , and  

( )
2 1

1 2 12

1

1 (1 )(1 )
( )

(1 2 )(1 )1

k k

C k k k ki k

i

t t t t t
G t

t t t t t tt t

−

+ −

=

− − + + + +
= =

− + − + + + +− −∑
"

"
 

which gives the desired result.   
 

Table 1 gives values for the number of compositions with no k’s for 
6k ≤ and 17n ≤ , as well as the number of compositions without restrictions.  

  

 
No 

restrictions 
No 1’s No 2’s No 3’s No 4’s No 5’s No 6’s 

n = 0 1 1 1 1 1 1 1 
1 1 0 1 1 1 1 1 
2 2 1 1 2 2 2 2 
3 4 1 2 3 4 4 4 
4 8 2 4 6 7 8 8 
5 16 3 7 11 14 15 16 
6 32 5 12 21 27 30 31 
7 64 8 21 39 52 59 62 
8 128 13 37 73 101 116 123 
9 256 21 65 136 195 228 244 

10 512 34 114 254 377 449 484 
11 1024 55 200 474 729 883 960 
12 2048 89 351 885 1409 1737 1905 
13 4096 144 616 1652 2724 3417 3779 
14 8192 233 1081 3084 5266 6722 7497 
15 16384 377 1897 5757 10180 13223 14873 
16 32768 610 3329 10747 19680 26012 29506 
17 65536 987 5842 20062 38045 51170 58536 

 

Table 1: Values of ˆ( , )C n k  for 6k ≤  
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Some patterns that occur in this table are a result of the initial conditions 
and were already mentioned in the proof of Theorem 1, for example that the 
column representing compositions without restrictions contains powers of 2, that 
each column agrees with the number of compositions with no restrictions 
through the entry ˆ( 1, )C k k−  and that 1ˆ( , ) ( ) 1 2 1.kC k k C k −= − = − Furthermore, 

it is easy to see that ˆ( 1, ) ( ) 2 2 2kC k k C k+ = − = − , since the only missing 
compositions of 1k + are the two involving an occurrence of  k, namely 1k + and 
1 .k+  

The second column in Table 1 contains the Fibonacci numbers and was 
thoroughly investigated in the context of compositions with no 1’s in [5].  
Likewise, the column with no 2’s appeared in [4]. The column representing the 
number of compositions with no 3’s occurs in [7] as A049856 where it is given 
by the same recurrence relation as in Theorem 1 for k = 3 with no applications 
mentioned. The remaining columns do not appear in [7]. 
 

3.    The number of occurrences of various summands among all the compo-
sitions of n with no occurrences of k 
First let us look at the number of occurrences of various summands among 

all the compositions with no restrictions. Chinn et al. [1] showed that 
3( ,1) ( 2)2nx n n −= +  for 1n > , and ( , ) ( , )x n j i j x n i+ + = . The latter formula can 

easily be extended to the general case where no k’s are allowed, as shown in the 
next theorem.  
 
Theorem 2.   The number of i’s among all compositions of n with no k’s is the 
same as the number of occurrences of i j+ among all the compositions of n + j 

with no k’s, i.e., ˆ ˆ( , , ) ( , , )x n j i j k x n i k+ + =  for all  i ≠ k, i + j ≠ k. 
  
Proof: Consider any occurrence of the summand i among the compositions of n 
without k’s. There is a corresponding occurrence of i j+  in a composition of 
n j+  in which the summand i has been replaced by i j+ and all other 
summands are the same, as long as i j+ ≠ k. This process is reversible, thus the 
correspondence is one-to-one.  
 

 As a result of Theorem 2, we only need to generate the number of 
occurrences of 1 among all the compositions of n without k’s, as long as 1k ≠ , 
in order to know the number of occurrences of any summand.  In the case that   
k =1, one needs to calculate ˆ( , 2, ),x n k  which by Theorem 2 gives the number of 

occurrences of 2i > . Note that Grimaldi calculated ˆ( , 2, )x n k  in Table 1 in [5]. 
 
Theorem 3.  The number of occurrences of 1 among all compositions of n 
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without k’s for k > 1 is given by 

          
ˆ ˆ ˆ ˆ( ,1, ) 2 ( 1,1, ) ( ,1, ) ( ( 1),1, )

ˆ ˆ                 ( 1, ) ( 2, )

x n k x n k x n k k x n k k

C n k C n k

= ⋅ − − − + − +

+ − − −
            (5) 

or by 

                  
1

1

ˆ ˆ ˆ( ,1, ) ( , ) ( 1) ( ,1, )
n

i
x n k n C n k n i x i k

−

=
= ⋅ − − + ⋅∑ ,                          (6) 

with initial conditions 3ˆ( ,1, ) ( ,1) ( 2)2nx n k x n n −= = +  for 3 n k≤ ≤ , ˆ(1,1, )x k  

= (1,1) 1x = and ˆ(2,1, ) (2,1) 2x k x= = . Furthermore,  

                                
1

0

ˆ ˆ ˆ( ,1, ) ( , ) ( 1 , )
n

i
x n k C i k C n i k

−

=
= ⋅ − −∑ ,                             (7) 

which implies that the generating function ( )xG t  is given by 
2

2

1 2

(1 )
( ) ( )

(1 2 )x C k k

t t
G t t G t

t t t +

−
= ⋅ =

− + −
. 

 
Proof: The initial conditions follow from the fact that for n k< , no k can occur. 
For n k= , the only composition that is excluded is the one consisting of k  
which does not contain any 1’s.  

Eq. (5) follows from the creation of the compositions of n from those of 
1n −  by either adding a 1 or by increasing the rightmost summand by 1. When 

adding a 1, we get all the “old” 1’s, and for each composition an additional 1, 
altogether ˆ ˆ( 1,1, ) ( 1, )x n k C n k− + −  1’s. When increasing the rightmost sum-

mand by 1, again we get all the “old” 1’s (of which there are ˆ( 1,1, )x n k− ), 
except that we need to make the following adjustments: 1) subtract the 1’s of 
those compositions of 1n −  with terminal summand 1k − , as they would result 
in a forbidden k; 2) subtract the terminal 1’s in the compositions of 1n −  that 
are lost when they turn into 2’s; and 3) add the 1’s for the compositions of n that 
end in 1k + , which have to be created separately. The number of 1’s in the 
compositions of 1n −  ending in 1k −  is identical to the number of 1’s in the 
compositions of ( 1) ( 1)n k n k− − − = − , hence we subtract ˆ( ,1, ).x n k k−  We 
lose a 1 in every composition of 1n −  with terminal 1, which equals the number 
of compositions of 2n − , thus we subtract ˆ( 2, )C n k− . Finally, the number of 

1’s in the compositions of n that end in 1k +  is given by ˆ( ( 1),1, )x n k k− + , 
which we add to the total. Simplification gives the stated result.   

The second formula for ˆ( ,1, )x n k , Eq. (6), is based on a geometric 
argument involving all tilings of a 1-by-n board. The total area of all these 
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tilings, given by ˆ( , ),n C n k⋅  has to equal the sum of the areas covered by 1-by-
1, 1-by-2,…, and 1-by-n tiles. The area covered by 1-by- i  tiles is given by 

ˆ( , , ),i x n i k⋅ and thus, 1
ˆ ˆ( , ) ( , , )

n
in C n k i x n i k=⋅ = ⋅∑ . Solving for ˆ( ,1, )x n k , 

using Theorem 2 to express the right-hand summands in terms of ˆ( ,1, )x i k , and 
then re-indexing  ( 1j n i= − + ) gives that  

2

2

1

1

ˆ ˆ ˆ( ,1, ) ( , ) ( , , )

ˆ ˆ( , ) ( 1,1, )

ˆ ˆ( , ) ( 1) ( ,1, ).

n

i

n

i

n

j

x n k n C n k i x n i k

n C n k i x n i k

n C n k n j x j k

=

=

−

=

= ⋅ − ⋅

= ⋅ − ⋅ − +

= ⋅ − − + ⋅

∑
∑
∑

 

Eq. (7) also can be seen easily in the framework of tilings. The number of 
1’s in all compositions of n corresponds to the number of 1-by-1 tiles in all 
tilings of a 1-by-n board. If a tiling of length n has a 1-by-1 tile at position i , 
then this tile is preceded by any tiling of length 1i −  and followed by a tiling of 
length n i− . The number of 1-by-1 tiles at position i  is thus given by 

ˆ ˆ( 1, ) ( , )C i k C n i k− ⋅ − . Since 1-by-1 tiles can occur at positions 1 through 1n − , 
the formula follows after a simple re-indexing of the summation index. This 
formula for ˆ( ,1, )x n k  implies (see for example [8], Rules 1 and 3, Section 2.2) 

that the generating function is of the form 2( ) ( )x CG t t G t= ⋅ , from which the 
result follows by Theorem 1.   
 

Table 2 gives the number of occurrences of 1’s among all compositions of n 
with no k’s for 1 6k≤ ≤ . We also include the number of occurrences of 1’s 
among the compositions of n without restrictions. 
 

 No restrictions No  2’s No 3’s No 4’s No 5’s No 6’s 
1n =  1 1 1 1 1 1 

2 2 2 2 2 2 2 
3 5 3 5 5 5 5 
4 12 6 10 12 12 12 
5 28 13 22 26 28 28 
6 64 26 46 58 62 64 
7 144 50 97 126 138 142 
8 320 96 200 270 302 314 
9 704 184 410 575 654 686 

10 1536 350 832 1212 1404 1486 
11 3328 661 1679 2538 2995 3196 

 

Table 2.  Values of ˆ( ,1, )x n k  
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Clearly, the entries in the column for “no k’s” agree with the entry in the 
column for the number of 1’s without restrictions for ,n k≤  as indicated in the 
derivation of the initial conditions in the proof of Theorem 3. We now look at 
diagonals of slope –1, for the part of the table that refers to compositions 

without k. These sequences are given by n
max{1,2 }{ ( ,1, )}k ix k k i ∞

= −+ , where i  is an 
integer. Values of 0i ≥  produce the part of the table that is shaded in dark gray, 

and the entries in those diagonals satisfy m( ,1, ) ( ,1)x k k i x k+ = , as explained 
above. 

The next diagonal of slope –1 (entries in bold) is given by m
3{ ( ,1, 1)}kx k k ∞

=− , 

and we have m( ,1, 1) ( ,1) 2x k k x k− = −  since the only compositions that are not 
allowed are 1k +  and 1 k+ , resulting in a difference of two 1’s.  Finally, the 

diagonal with entries n
4{ ( ,1, 2)}kx k k ∞

=−  (entries in light gray) satisfies 

n( ,1, 2) ( ,1) 6x k k x k− = − , since the only compositions that are not allowed are 
those consisting of one k  and two 1’s, of which there are three, for a total of six 
1’s.  
 

4.    The number of palindromes with no k’s. 
The number of palindromes of n with no occurrence of k depends on the 

relative parity of n and k as detailed in the following theorem. For simplicity in 
stating the results, let 2n m=  or 2 1n m= +  and 2k j=  or 2 1k j= + . 
 
Theorem 4.  The number of palindromes of n with no k’s is given by the 
following formulas.  

a)
0, 

0

ˆ( , )      if  and  have the same parity      
ˆ( , )

ˆ( , ) if  and  have opposite parity.

m

i i m j

m

i

C i k n k

P n k

C i k n k

= ≠ −

=

=







∑

∑
  

b) ,3
1

ˆ ˆ ˆ( , )  ( 2 , )+ ( 4 , )  
k

n k
i

P n k P n i k P n k k δ
=

= − − +∑  for 2n k≥ , 

where , 1i jδ =  if i j=  and , 0i jδ =  otherwise, with initial conditions 

ˆ( , ) 0P n k =  for 0n < , ˆ(0, ) 1P k = ,  / 2ˆ( , ) 2 nP n k =  for 0 n k< < , 
 / 2ˆ( , ) 2 1nP n k = −  for n k= ,   / 2 ( ) / 2 1ˆ( , ) 2 2n n kP n k − −= −  for 2 ,  k n k< < n 

and k having the same parity, and   / 2ˆ( , ) 2 nP n k =  for 2 ,  k n k< <  n and k 
having opposite parity. 
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Proof: a) An odd length palindrome has to have an odd middle summand, and an 
even length palindrome has to have an even middle summand or an even split, 
i.e., the parity of the middle summand is the same of that of n. Each palindrome 
can be created by attaching a composition of length ( ) / 2n l−  on the left of a 
middle summand of size l  and the reverse of the composition on the right. 
Thus, if n and k have opposite parity, k will never be a middle summand. If n 
and k have the same parity, then k has to be excluded as a possible middle 
summand.  Now we count the palindromes according to the compositions used 
to form them. 

b) The palindromes of n without k’s can also be created by adding the 
summand i on both sides of a palindrome of length 2n i−  for 1, ..., 1.i k= −  To 
create end summands that are larger than k, we can increase both end summands 
of the palindromes of 2n k− by k if those palindromes consist of more than one 
summand. For the single palindrome of 2n k−  consisting of just 2n k−  we 
increase this summand by 2k, thus creating the single palindrome consisting of 
n. The only palindromes that will not be created in this manner are the 
palindromes with end summands 2k , of which there are ˆ( 4 , )P n k k− , and the 
palindrome of 3n k= consisting of the single summand 3 ,k  which need to be 
added in separately. The initial conditions for n k<  follow from [3, Lemma 
11], as ˆ( , )P n k agrees with the number of palindromes of n without restrictions, 

given by / 22 n   . For n k= , we get one fewer palindrome, as we have to exclude 
the palindrome consisting of just k. For 2k n k< < , we have to exclude those 
palindromes that contain a single k. This can only occur when n and k have the 
same parity, with k as the middle summand, combined with a composition of 
( ) / 2n k−  on either side. There are ( ) / 2 1(( ) / 2) 2 n kC n k − −− =  such palin-
dromes, which need to be subtracted from the total.  
 

Table 3 gives the number of palindromes of n with no occurrence of k for 
1 6k≤ ≤ . Note that none of the columns in the Table 3 appears in [7]. 
However, since there is a different formula for even and odd length palindromes, 
it makes sense to look at the subsequences consisting of every other entry in 
each column.   

For 2k = , we get interleaved Fibonacci sequences. If we look at the 
subsequences with 3k ≥  for which n and k have opposite parity, then the 
sequences initially agree with the k-generalized Fibonacci numbers [2] 
(sequence A000073 for 3k = , A000078 for 4k = , A001591 for 5k = , and 
A001592 for 6k = ), which have a recursion of the form 

1( )  ( )
k
iF n F n i== −∑ . This can be seen to agree with the formula given in 
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Theorem 3, part b), as long as 4n k≤ , since ,3 0n kδ =  whenever n and k have 
opposite parity. The first term that differs from the respective k-generalized 
Fibonacci sequence is displayed in bold in Table 3. 
  

 ˆ( ,1)P n  ˆ( , 2)P n  ˆ( ,3)P n  ˆ( , 4)P n  ˆ( ,5)P n  ˆ( , 6)P n  
n = 0 1 1 1 1 1 1 

1 0 1 1 1 1 1 
2 1 1 2 2 2 2 
3 1 2 1 2 2 2 
4 2 2 4 3 4 4 
5 1 3 3 4 3 4 
6 3 4 7 7 8 7 
7 2 5 5 8 7 8 
8 5 7 13 13 16 15 
9 3 9 10 15 14 16 

10 8 12 24 25 31 30 
11 5 16 18 29 27 32 
12 13 21 45 49 61 59 
13 8 28 34 56 53 63 
14 21 37 84 94 120 117 
15 13 49 63 108 105 125 
16 34 65 157 182 236 232 
17 21 86 118 209 206 248 
18 54 114 293 352 464 461 
19 34 151 220 404 405 492 
20 88 200 547 680 913 914 

Table 3.  Values of ˆ( , )P n k  for 6k ≤  
 

However, two of the odd or even subsequences do agree with sequences in 
[7]. For 2k = , the subsequence for even n agrees with A005314, as was shown 
in [4].  For 3k = , the subsequence for even n agrees with all the terms given for 
A059633 in [7].  
 

5.    Some results on the number of parts in compositions with no k’s  
When compositions are viewed as tilings, it is quite natural to sort tilings by 

the number of tiles used.  This corresponds to the number of parts in 
compositions.  In the current study of compositions with no occurrence of a 
particular summand, the number of tiles (parts in the composition) depends not 
only on n but also on k, the number omitted as a summand.  Thus a single table 
cannot show the number of compositions with a given number of parts with 
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variable forbidden summands. We will state a general result for the number of 
compositions with no k’s with a given number of parts, and then focus our 
attention on some special cases with 7.k ≤  The case 2k =  was thoroughly 
investigated in [4]. 

 
Theorem 5.  The number of compositions of n with exactly j parts for 

1, 2, 2n j k≥ ≥ ≥  is given by either of these two formulas: 

a)
1

1 1
1

ˆ ˆ ˆ( , ) ( , ) ( , )
n

j j j
i

C n k C n i k C n k k
−

− −
=

= − − −∑ ,  

b) 1 1 1
ˆ ˆ ˆ ˆ ˆ( , ) ( 1, ) ( 1, ) ( , ) ( 1, )j j j j jC n k C n k C n k C n k k C n k k− − −= − + − − − + − − , 

with initial conditions 1
ˆ ˆ( , ) 0  for 0,  ( , ) 1 jC n k n C n k= ≤ = for ,  n k≠ and 

1
ˆ( , ) 0.C k k =  

 
Proof: a) For any composition of n i−  having 1j −  parts, we can form a 
composition of n having j parts by adding the summand i  to the end of the 
shorter composition, except for i k= .  This increases the number of parts by 
one as required.  The initial conditions follow easily, as the only composition of 
n with one part is n itself. 

b)  A composition of n with j  parts can either be created from a 
composition of 1n −  with 1j −  parts by adding a 1, or from a composition of  

1n −  having  j parts by increasing the final summand by 1.  The latter count 
needs to be modified to exclude those compositions that would end in a k if 
increased, and by adding in those compositions that end in 1k + , which would 
not be created in the extension process. The compositions of n with j parts that 
end in k can be thought of as compositions of n k−  with 1j −  parts, followed 

by a k, so there are 1
ˆ( , )jC n k k−

− compositions that need to be subtracted. A 

similar argument shows that there are 1
ˆ( ( 1), )jC n k k−

− +  compositions of n with 

j parts that end in 1k + , which need to be added to the total.  
 
 To understand some of the patterns for values of ˆ( , ),jC n k  let us first look 
at Table 4 which contains the number of compositions of n with j parts when 
there are no restrictions on the summands. For notational convenience, we will 

use bin( , )n k to denote 
n

k

 
 
 

.  

 Note that each row in Table 4 agrees with the corresponding row of Pascal’s 
triangle.   To understand why the binomial coefficients appear in this table it is 
once again convenient to think of a composition as a tiling.  Note that any tiling 
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of a 1-by-n rectangle with j parts can be formed by selecting 1j −  positions to 
separate the whole rectangle into shorter tiles.  This can be accomplished in 
bin( 1, 1)n j− −  ways.    
 

 j = 1 2 3 4 5 6 7 8 9 10 
1n =  1          

2 1 1         
3 1 2 1        
4 1 3 3 1       
5 1 4 6 4 1      
6 1 5 10 10 5 1     
7 1 6 15 20 15 6 1    
8 1 7 21 35 35 21 7 1   
9 1 8 28 56 70 56 28 8 1  

10 1 9 36 84 126 126 84 36 9 1 
11 1 10 45 120 210 252 210 120 45 10 
12 1 11 55 165 330 462 462 330 165 55 
13 1 12 66 220 495 792 924 792 495 220 
14 1 13 78 286 715 1287 1716 1716 1287 715 
15 1 14 91 364 1001 2002 3003 3432 3003 2002 

 

Table 4.  Values of ( )jC n   
 

 We now look at tables of values of ˆ( , )jC n k  for k = 3, … ,7 to illustrate the 
patterns that hold across the tables. We first look at the columns, then at 
diagonals of slope –1. For the entry in row n and column j  of the mth diagonal, 
we have 1n j m− = − , and thus the entries in mth diagonal are given by 

1
ˆ( , )n mC n k− + . The column for j = 1 follows directly from the initial conditions. 

The next theorem states results for the second column and the first 1k −  
diagonals. No obvious uniform pattern exists for the other columns. 

 
Theorem 6.  a) The entries in the second column in Tables 5 to 9 are given by  

2

1
ˆ( , ) 2 2

3 otherwise.

n n k

C n k n n k

n

− <

= − =

−






 

b) For 2k ≥ , the first 1k −  diagonals in the respective table agree with the 
corresponding diagonals in Table 4, i.e., ˆ( , ) ( ) bin( 1, 1)j jC n k C n n j= = − −  for 

1 .n k j n+ − < ≤  
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Proof: a) The values in column 2 can be explained combinatorially by looking at 
tilings. If no k is allowed, then no cut can be made in the 1-by-n rectangle at 
position k or at position n – k. For n k< , this cannot happen, and thus the single 
cut can be made at any of the 1n −  cutting positions. For 2n k= , the positions 
k and n – k are identical, thus there is only one forbidden position, hence 

2
ˆ(2 , ) 2C k k n= − . In all other cases, two of the 1n −  cutting positions are 

forbidden, thus 2
ˆ( , ) 3C n k n= −  (for , 2n k n k> ≠ ).  

b) Note that for m k< , the number of parts 1 1j n m n k= − + > − + , thus k 
cannot occur as a part.  
 
 Since the 1st through ( 1k − )st diagonals agree with the values in Table 4, 
they also appear as diagonals within Pascal’s triangle. These entries are shown 
in bold in Tables 5 through 9. Note that any such diagonal that agrees with 
Pascal’s triangle for a given value of k will also occur in the tables where the 
forbidden summand is bigger than the given value of k. We will give 
combinatorial interpretations for the diagonal sequences that also occur as 
diagonal sequences in Pascal’s triangle, and also for the entries of the kth 
diagonals, which do not reappear in the tables for larger values of k.   
 To explain the combinatorial interpretations, it is convenient to create the 
compositions of n having  j  parts as follows: we start with  j 1's (as there are to 
be j parts), and then distribute the difference n j−  across these j  parts, adding 
to the 1's that are already there. In order to count all possibilities, we will find 
the partitions of n j− , then count how many associated compositions without k 
exist. We illustrate the procedure for the compositions of 4n =  without 3’s 
having 2j =  parts. First create two 1's, resulting in the composition 1+1. Next 
distribute the difference 2n j− = , i.e., consider all the partitions of 2, namely 
{2} and {1,1}. Using the first partition leads to 3+1 (the first 1 is increased by 2) 
or 1+3 (the second 1 is increased by 2), and the second partition creates 2+2 
(both 1's are increased by 1). The first two compositions are not allowed as they 
contain a 3, so we have to disregard all the partitions of n j−  that contain a 2, 
and in general, all the partitions of n j−  that contain 1.k −  We will refer to this 
procedure as the distributive creation method. 

Table 5 through Table 9 contain the values of ˆ( , )jC n k  for 3 7.k≤ ≤  We   
begin by giving a derivation of the formula for the kth diagonals in these tables 
(shown in gray), and in the case k = 3, also for the 4th diagonal, which is a 
known sequence.  

The third (m = 3) diagonal of 2n −  parts in Table 5 corresponds to a 
composition with two 2’s and 4n −  1’s for a total of 
bin( 2, 2)n − compositions, i.e., a triangle number of them. There is only one 
additional known sequence that occurs in Table 5, namely the diagonal of 
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3j n= −  parts (m = 4, entries in italic). To count these compositions, we use 
the distributive creation method described above. The partitions of 3n j− =  
without 2’s are {1,1,1} and {3}, which result in the following partitions of n: 
either three 2’s and 3j −   1’s or one 4 and 1j −  1’s for a total of 

3 2bin( , 3) ( 3 8 ) / 6j j j j j+ = − +  compositions.   This sequence occurs as 
A000125 in [7], the cake number, which gives the maximal number of pieces 
resulting from i planar cuts through a cube (or cake), and is given by 

3( ) ( 5 6) / 6a i i i= + + . Basic algebra shows that ˆ( 3, 3)jC j + =  ( 1)a j − .  
 

j = 1 2 3 4 5 6 7 8 9 10 
1n =  1          

2 1 1         
3 0 2 1        
4 1 1 3 1       
5 1 2 3 4 1      
6 1 4 4 6 5 1     
7 1 4 9 8 10 6 1    
8 1 5 12 17 15 15 7 1   
9 1 6 15 28 30 26 21 8 1  

10 1 7 21 38 56 51 42 28 9 1 
11 1 8 27 56 85 102 84 64 36 10 
12 1 9 34 80 130 172 175 134 93 45 
13 1 10 42 108 200 276 322 288 207 130 
14 1 11 51 144 290 447 547 568 459 310 
15 1 12 61 188 410 692 924 1024 957 712 

 

Table 5.  Values for ˆ( , 3)jC n  
 

We now look at the case 4.k =  Table 6 shows the number of compositions 
of n with no 4’s having j parts. The diagonal of 3j n= −  parts (m = 4) occurs 
in [7] as A005581 and is given by the formula  ( ) ( 1) ( 4) / 6a i i i i= − ⋅ ⋅ + , which 
can be derived as follows. The partitions of 3n j− =  without 3’s are {1,1,1} 
and {2,1}, which result in these partitions of n: three 2’s and 3j −   1’s, or one 
3, one 2, and 2j −  1’s, for a total of bin( , 3) 2 bin( , 2) ( 1)( 4) / 6j j j j j+ ⋅ = − +  

compositions, thus ˆ( 3, 4) ( )jC j a j+ = . 

Next we look at the case 5.k =  Table 7 shows the number of compositions 
of n with no 5’s having j parts. 
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 1j =  2 3 4 5 6 7 8 9 
1n =  1         

2 1 1        
3 1 2 1       
4 0 3 3 1      
5 1 2 6 4 1     
6 1 3 7 10 5 1    
7 1 4 9 16 15 6 1   
8 1 6 12 23 30 21 7 1  
9 1 6 19 32 50 50 28 8 1 

10 1 7 24 50 76 96 77 36 9 
11 1 8 30 72 120 162 168 112 45 
12 1 9 36 99 185 267 315 274 156 
13 1 10 45 128 275 432 553 568 423 
14 1 11 54 168 385 681 939 1072 963 
15 1 12 64 216 531 1022 1554 1920 1959 

 

Table 6.  Values for ˆ( , 4)jC n  
 

 1j =  2 3 4 5 6 7 8 9 
1n =  1         

2 1 1        
3 1 2 1       
4 1 3 3 1      
5 0 4 6 4 1     
6 1 3 10 10 5 1    
7 1 4 12 20 15 6 1   
8 1 5 15 31 35 21 7 1  
9 1 6 19 44 65 56 28 8 1 

10 1 8 24 60 106 120 84 36 9 
11 1 8 33 80 160 222 203 120 45 
12 1 9 40 111 230 372 420 322 165 
13 1 10 48 148 330 582 777 736 486 
14 1 11 57 192 465 882 1324 1492 1215 

 

Table 7.  Values for ˆ( , 5)jC n  
 

The diagonal of 4j n= −  parts (m = 5) occurs in [7] as A005718, the 

quadrinomial coefficients, and is given by 2( ) bin( , 2) ( 7 18) /12a i i i i= ⋅ + + , 

where ˆ( ) ( 4, 5).ja j C j= +  We can show the equivalence of the two sequences 
as follows: The partitions of 4n j− =  without 4’s are {1,1,1,1}, {2,2}, {2,1,1}, 
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and {3,1} which result in these partitions of n: four 2’s and 4j −   1’s, of which 
there are bin( , 4)j ; two 3’s and 2j −   1’s, of which there are bin( , 2)j ;  one 3, 
two 2’s and 3j −  1’s, of which there are bin( 1, 2)j j⋅ − ; one 4, one 2, and 

2j −  1’s, of which there are ( 1)j j − . Thus, ˆ( 4, 5)jC j +  = bin( , 4)j + 

bin( , 2)j  + bin( 1, 2)j j⋅ −  + ( 1)j j −  = 2bin( , 2) ( 7 18) /12j j j⋅ + + . 
Next we look at the case 6.k =  Table 8 shows the number of compositions 

of n with no 6’s having j parts. 
 

 1j =  2 3 4 5 6 7 8 9 
1n =  1         

2 1 1        
3 1 2 1       
4 1 3 3 1      
5 1 4 6 4 1     
6 0 5 10 10 5 1    
7 1 4 15 20 15 6 1   
8 1 5 18 35 35 21 7 1  
9 1 6 22 52 70 56 28 8 1 

10 1 7 27 72 121 126 84 36 9 
11 1 8 33 96 190 246 210 120 45 
12 1 10 40 125 280 432 455 330 165 
13 1 10 51 160 395 702 882 784 495 
14 1 11 60 208 540 1077 1569 1660 1278 
15 1 12 70 264 731 1582 2611 3208 2931 
16 1 13 81 329 975 2262 4123 5763 6111 
17 1 14 93 404 1280 3168 6265 9760 11790 

 

Table 8.  Values for ˆ( , 6)jC n  
 

The diagonal of 5j n= −  parts (m = 6) occurs in [7] as A027659, the sixth 
column of the quintinomial coefficients, and is given by ( ) bin( , 2)a i i= +  
bin( 1, 3) bin( 2, 4) bin( 3, 5)i i i+ + + + + . We can show the equivalence of the 
two sequences as follows: The partitions of 5n j− =  without 5’s are 
{1,1,1,1,1}, {2,2,1}, {2,1,1,1}, {3,2}, {3,1,1}, and {4,1} which result in these 
partitions of  n: five 2’s and 5j −  1’s, of which there are bin( , 5)j ; two 3’s, one 
2 and 3j −  1’s, of which there are bin( 1, 2)j j⋅ − ;  one 3 , three 2’s and 4j −  
1’s, of which there are bin( 1, 3)j j⋅ − ; one 4, one 3 and 2j −  1’s, of which 
there are ( 1)j j − ; one 4, two 2’s and 4j −  1’s, of which there are 
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bin( 1, 2)j j⋅ − ; and one 5, one 2 and 2j −  1’s, of which there are ( 1)j j − . 
Thus there are a total of bin( , 5)j + bin( 1, 3)j j⋅ − + 2 bin( 1, 2)j j⋅ ⋅ −  
+ 2 ( 1)j j⋅ ⋅ − compositions, which can be shown to agree with the formula 

given for sequence A027659, with ˆ( 5, 6) ( 2)jC j a j+ = − . 

Finally, we look at the case 7.k =  Table 9 shows the number of 
compositions of  n with no 7’s having j parts. 
 

 1j =  2 3 4 5 6 7 8 9 
1n =  1         

2 1 1        
3 1 2 1       
4 1 3 3 1      
5 1 4 6 4 1     
6 1 5 10 10 5 1    
7 0 6 15 20 15 6 1   
8 1 5 21 35 35 21 7 1  
9 1 6 25 56 70 56 28 8 1 

10 1 7 30 80 126 126 84 36 9 
11 1 8 36 108 205 252 210 120 45 
12 1 9 43 141 310 456 462 330 165 
13 1 10 51 180 445 762 917 792 495 
14 1 12 60 226 615 1197 1674 1708 1287 
15 1 12 73 280 826 1792 2856 3376 2994 
16 1 13 84 349 1085 2583 4613 6211 6363 

Table 9.  Values for ˆ( , 7)jC n  
 

The diagonal of 6j n= −  parts (m = 7) occurs in [7] as A062989, the 7th 
column of the generalized Catalan Array FS[5; ,6]i  and is given by ( )a i = , 

4 3 2( 1)( 2)( 24 221 954 1800) / 6!i i i i i i+ + + + + + ,where ˆ( 6, 7) ( 2).jC j a j+ = −   
We can show the equivalence of the two sequences as follows: The partitions of 

6n j− =  without 6’s are {1,1,1,1,1,1}, {2,2,2}, {2,2,1,1}, {2,1,1,1,1}, {3,3}, 
{3,2,1}, {3,1,1,1}, {4,2}, {4,1,1}, and {5,1} which result in these partitions of  
n: six 2’s and 6j −  1’s, of which there are bin( , 6)j ; three 3’s and 3j −  1’s, of 
which there are bin( , 3)j , two 3’s and two 2’s and 6j −  1’s, of which there are 
bin( , 4) bin(4, 2)j ⋅ , one 3, four 2’s and 5j −  1’s, of which there are 

bin( 1, 4)j j⋅ − ;  two 4’s and 2j −  1’s, of which there are bin( , 2)j ; one 4, 
one 3, one 2 and 3j −  1’s, of which there are ( 1)( 2)j j j− − ; one 4, three 2’s 
and 4j −  1’s, of which there are bin( 1, 3)j j⋅ − ;  one 5, one 3, and 2j −  1’s, 
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of which there are ( 1)j j − ; one 5, two 2’s and 3j −  1’s, of which there are 
bin( 1, 2)j j⋅ − ; and one 6, one 2, and 2j −  1’s, of which there are ( 1)j j − . 

Summing these terms and simplifying shows agreement of the number of 
compositions  with the formula given for sequence A062989. 

Similar derivations can be made for larger values of k; however, the number 
of partitions increases quite rapidly, and so far no pattern has emerged that 
would allow for easier counting of these quantities. Likewise, in each table, 
formulas for the diagonals for m k>  can be derived in the same manner. We 
have checked some of these diagonals, and none (except for k = 3, m = 4) appear 
in [7]. 

We now give derivations for the first six diagonals in Table 9 that occur as 
diagonals in Pascal’s triangle. The first (m = 1) diagonal of n parts consists of all 
1’s, since there is only one composition of n with n parts. The diagonal of 1n −  
parts (m = 2) corresponds to a composition with one 2 and 2n −  1’s for a total 
of 1n −  compositions. The diagonal of 2j n= −  parts (m = 3) consists of the 
triangle numbers, as the only compositions with 2n −  parts are the 
bin( , 2)j compositions with two 2’s and 2j −  1’s. The diagonal of 3j n= −  
parts (m = 4) occurs as A000292 in [7], the tetrahedral or pyramidal numbers, 
and is given by ( ) ( 1)( 2)( 3) / 6a i i i i= + + + , where ˆ( 3, ) ( 1).jC j k a j+ = −  The 
partitions of 3n j− =  are {1,1,1}, {2,1}, and {3}, which result in these 
partitions of n: three 2’s and 3j −  1’s; one 3, one 2, and 2j −  1’s; or one 4 and 

1j −  1’s, for a total of bin( , 3) 2 bin( , 2)j j j+ ⋅ +  compositions. Algebraic 
simplification shows the equivalence of the 4th diagonal and sequence A000292. 
The diagonal of 4j n= −  parts (m = 5)  appears as A000332 in [7], with ( )a i =  

4 3 2( 6 11 6 ) / 24i i i i− + − , which has several interpretations, for example the 
number of intersection points of the diagonals of a convex i-gon. Arguments 
similar to the ones above show that ˆ( 4, ) ( 3).jC j k a j+ = +  Finally, the 6th 

diagonal appears as A000389 in [7], with ( ) bin( , 5)a i i= . Using the distributive 

creation method once more, it can be shown that ˆ( 5, ) ( 4).jC j k a j+ = +  
For higher values of k, more diagonals from Pascal’s triangle will occur, 

and in each case their formulas can be derived and shown to be equivalent to the 
known sequences using the distributive creation method. 
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