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ABSTRACT. We study a variation of T-coloring which arose from the channel assignment
problem introduced by Hale [5]. Given a non-negative integral set T' containing 0, a T-coloring
on a graph G is a function that assigns to each vertex a non-negative integer (color) under
the restriction that the difference of colors of any two adjacent vertices does not fall in T'.
A no-hole T-coloring is a T-coloring such that the colors used must be consecutive. Roberts
[14] and Sakai and Wang [15] studied no-hole T-colorings for T' = {0,1} and {0,1,2,...,7},
respectively. We explore this problem for other sets 7. A characterization of the existence of
no-hole T-colorings is obtained immediately by combining graph homomorphism and a special
family of graphs named T-graphs. For given T and G, the consecutive T-span, cspr(G), is
the minimum span among all possible no-hole T-colorings of G if there exists one; otherwise
cspr (G) = oo. If G has a no-hole T-coloring, then |V(G)| — 1 is an upper bound of cspr(G).
We show that the upper bound is attained by large T-graphs if T'= {0,1,--- ,7} U A where
A contains no multiples of (r 4+ 1), or T'= {0,a,a + 1,--- ,b}.

1. INTRODUCTION

T-Colorings arose from the channel assignment problem introduced by Hale [5], in which
one non-negative integer (channel) is assigned to each radio station or transmitter so that
interference is avoided. Interference occurs when the separation of channels of two close
locations falls within the given integral set T' (called T-set) containing 0. A graphical
model can be constructed for this problem as follows. Let each station be represented by
a vertex, and make an edge between two vertices that correspond to close stations. Thus
for a given graph G(V, E') and T-set, a T-coloring (or a valid channel assignment) of G is
a function f: V(G) — Z* U {0} such that if {u,v} € E(G) then |f(u) — f(v)| ¢ T. The
T-coloring problem has been studied extensively (See [2 - 4, 8 - 13, 16].)
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In this article, we study a variant of the channel assignment problem in which the
channels used must be consecutive. We call a T-coloring f no-hole T-coloring if f(V) is a
set of consecutive integers.

In terms of the efficient use of the channels, span is one of the variables that have been
studied most extensively in the channel assignment problem. The span of a T-coloring f
is the difference of the largest and smallest colors used, i.e., max, yev |f(u) — f(v)|. For
given T" and G, the T-span of G, denoted by spy(G), is the minimum span over all possible
T-colorings of G. We define the consecutive T-span, cspr(G), by the minimum 7T-span
among all no-hole T-colorings of G if there exists one; otherwise, cspr(G) = oo. Notice
that for a given T-set, not every graph has a no-hole T-coloring. For instance, if 1 € T,
any complete graph with more than one vertex does not have a no-hole T'-coloring.

Given 1" and G, if G has a no-hole T-coloring, then an immediate upper bound for
cspr(G) is |[V(G)| — 1. And since any no-hole T-coloring is also a T-coloring, we have:

spr(Ku(@)) < spr(G) < espr(G) < [V(G)| -1, (*)

where w(@) is the smallest number of vertices of a complete graph (clique) in G and K,
is a clique on n vertices. The first inequality in (*) is straightforward.

Introducing the notion of no-hole T-colorings, Roberts [14] studied the no-hole T-
coloring with 7" = {0,1}. Sakai and Wang [15] studied the no-hole T-coloring with
T = {0,1,2,...,7}. The exact values of cspr(G) as T = {0,1,2,...,r} for bipartite
graphs were discussed in [1]. It was shown in [14], among other results, that when
T = {0,1}, G is a path, cycle, or 1-unit sphere graph, and G has a no-hole T-coloring,
then cspr(G) < spr(G) + 1. Similar results for 7" = {0,1,2,...,7} were presented in
[15], namely, if T = {0,1,2,...,7} and G satisfies the same assumptions as above, then
cspr(G) < spr(G)+r. A natural question raised in [14] states: If T = {0, 1}, is it true that
cspr(G) < spr(G) + 1 for any graph that has a no-hole T-coloring ?” The answer is nega-
tive. It was proved in [15] that there exist graphs G such that spy(G)+r < cspr(G) < oo,
when T'=4{0,1,2,...,r}.

We study the consecutive T-spans of T-graphs for two more general families of T-sets.
Given T, the T-graph denoted by Gr is defined by V(Gr) = Z+U{0}, and E(Gr) = {ab:
la —b] ¢ T'}. The T-graph of order n, denoted by G, is the subgraph of Gy induced by
the first n vertices of G, {0,1,2,...,n—1}. For two integers a and b, we denote [a, b] the
set of consecutive integers {a,a + 1,a + 2,...,b}. Given any positive integer r, a T-set is
r-initial if T = [0,7] U S, where S contains no multiple of (r + 1). We show that if 7" is
r-initial or "= {0} U [a, b], then there exists N so that for any n > N, cspr(G%}) =n — 1.

2. PRELIMINARIES

There is a direct characterization of the existence of a no-hole T-coloring by using graph
homomorphism and T-graphs. For two simple graphs G and H, a graph homomorphism
from G to H is a function f : V(G) — V(H) such that if u and v are adjacent in G, then
f(u) and f(v) are adjacent in H. If such a function exists, we say that G is homomorphic
to H and denote this by G — H. Furthermore, if the homomorphism is onto, then it is an

onto

epimorphism and denoted by G —— H.
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For a graph G, the chromatic number, x(G), is the minimum number of colors in a
proper vertex-coloring (i.e. adjacent vertices receive different colors). The following are
basic properties about the relationships between graph homomorphism, x(G), w(G), and
spr(G). The proofs can be obtained by composition of functions.

Proposition 2.1. If G — H, the following are all true:
(a) x(G) < x(H),
(b) w(G) < w(H),
(c) for any T-set, spr(G) < spr(H).

Notice that if G is homomorphic to H, the inequality cspr(G) < cspr(H) is not always
true. For instance, if T'= {0,1,4,5}, G = K3, and H = C5 (five-cycle), then G — H, and
{0,1,2,3,4} can be assigned to the vertices of H as a no-hole T-coloring, so cspr(H) < 4,

however, cspr(G) = oo. If we add a condition that the homomorphism from G to H

is onto, that is G onto, g , then any no-hole T-coloring of H can be transformed into a

no-hole T-coloring of G by a composition of functions, so cspr(G) < cspr(H). That is,

Proposition 2.2. If G 22 H, then for any T, cspr(G) < espr(H).
The following characterization of the existence of a no-hole T-coloring can be obtained
directly from definition.

Theorem 2.3. Given 1T', a graph G has a no-hole T'-coloring with span k — 1 if and only
if G 22 Gk

Corollary 2.4. GivenT and G, if x(G) > x(G%) or w(G) > w(GE.), then cspr(G) > k—1.

Proof. Suppose G has a no-hole T-coloring with span k' — 1, ¥/ < k. By Theorem 2.3,
G 2, GE'. Referring to Prop. 2.1, x(G) < x(GE) < x(G%) and w(G) < w(Gk) <
w(Gk). O

Given T and G, the calculation of cspr(G) or determining whether there is a no-hole
T-coloring of G in general is difficult. In view of Theorem 2.3, the existence of a no-hole
T-coloring is equivalent to the existence of an epimorphism from G to a T-graph with
finite order. It has been proved by Hell and Nesetfil [7] that determining whether there
is a homomorphism from G to H in general is NP-complete unless G is bipartite; when
G is bipartite, then it is polynomial. Via private communication, Hell [6] claimed that
determining whether there is an epimorphism from G to H in general is NP-complete for
all non-bipartite graphs G as well as for some bipartite graphs G.

3. CONSECUTIVE 7T-SPANS OF T-GRAPHS

In this section, we prove that cspp(G%) equals the upper bound n — 1, provided n large
for r-initial sets and 7= {0} U [a, b].

For any T-set and positive integer n, the enumeration of the vertices of G., [0,n — 1],
itself is a no-hole T-coloring. Hence cspr(G%) < n — 1. If n is an integer such that
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spr(K,,) = n — 1 for some m, then K,, — G%, so w(G}) = m. By (*), this implies
n— 1< spr(Kyen)) < spr(Gr) < espr(Gr) < n —1, so espr(GF) =n — 1. It is known
8] that spr(K,,) =n — 1 if and only if n is the smallest such that w(G%}) = m. Thus we
have

Lemma 3.1. Given T, if w(G%) > w(G2™1), then cspr(GR) = n — 1.

If the given T-set is T”, we call a T-coloring of G a T’-coloring, and denote the consec-
utive T-span of G by cspr/(G), and the T-graph of 77 by Gr-.

Lemma 3.2. IfT C T, then for any G and n € Z*, the following are all true:
(a) cspr(G) < espr (G),
(b) cspr(Giy) < espr(Gy) < esprr(Gr),
(c) espr(Gyr) < espr(G) < espre (G-

Proof. (a) Since T' C T”, any no-hole T’-coloring of G is also a no-hole T-coloring of G, so
the inequality holds.

The second inequality in (b) and the first inequality in (c) can be derived from (a). The
remaining inequalities of (b) and (c) can be obtained from Prop. 2.2 and the fact that

n, 220 gn O

Note that cspr/(G7%) in the lemma above may not be finite. For instance, let T'= {0, 1}
and 7" = {0, 1,2}, then w(G%.) = 3 > w(G%,) = 2. By Corollary 2.4, cspy/(G5) > 4 which
is impossible, so cspy (G5) = oo.

Now we prove the sharpness of the upper bound of cspr(G?.) for the largest r-initial
set, Tr11 = {0} U {x € ZT : z is not a multiple of (r + 1)}.

Theorem 3.3. Let T'=1T, .1, then

0, 1<n<r+1;
=

CSpT(G%) B { r+4+2

n—1, n

Proof. If n < r+ 1, then G7. is an independent graph (i.e. no edge) so cspr(G%) = 0.

If n > r+ 2, it is straightforward to verify that G7. is a disjoint union of 7 + 1 cliques,
G% = SoWS1 WS- - -WS,., where V(S;) = {q(r+1)+i:q € ZTU{0} and q(r+1)+i < n}.

Suppose cspr(G}) =k —1<n—2. Let f: V(G}) — [0,k — 1] be a no-hole T-coloring
of G%.. Because T' contains all positive integers except multiples of (r + 1), the colors used
in any clique S; must have the same residue modulo (r + 1). Without loss of generality,
we may assume that for any 0 < i < r and u,v € V(S;), f(u) = f(v) =7 (mod (r +1)).
Since f is onto and k < n, there exist vertices  and y in G7. such that f(z) = f(y),
so f(z) = f(y) (mod (r + 1)), but  and y must belong to different cliques. This is a
contradiction, thus cspr(G%h) =n—1. O

To prove the sharpness of the upper bound of cspy(G?:) for r-initial sets, we also need
the following lemma.
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Lemma 3.4. Let T = [0, r], then

0,

1<n<r+1;
n—1, n

<
2

Proof. From the proof of Theorem 3.3, G%H =Sou S WS- S,.. It suffices to show

onto

the case for n > r 4+ 2, i.e. |Sy| = 2. Since Gr,,, — G, cspr(Gh) < n — 1. Suppose
cspr(Gry, ) = k—1for some k <n. Let f: V(Gf, ) — [0, k—1] be a no-hole T-coloring

of G7, .. Then there exist vertices u and v such that f(u) = f(v). Let u € S;, v € S; and
1 # 7. It is enough to examine the following two cases:

Case 1. |S;| = |S;| = 1. Since | Sp| > 2, there exist  and y in Sy with |f(z)—f(y)| = r+1
(T = [0,7]). Without loss of generality, assume f(z) < f(y). Because f is onto, the r
colors [f(z) + 1, f(x) 4+ r] must be used in the remaining r cliques, Sy, So, ..., Sy, and no
two of them can be assigned to the same clique. This is impossible since f(u) = f(v).

Case 2. |S;| (or |S;]) = 2. Then there exists x € S;, © # u, and |f(u) — f(z)| > r+ 1.
If f(u) =wug < f(x), then these r colors [ug + 1, ug + r| have to be used in the remaining r
cliques, and no two of them can be assigned to the same clique. Because f(v) = f(u) = uo,
none of those r colors can be assigned to S;, a contradiction. Similarly, if f(u) = ug > f(z),
then one can use the r colors [ug — 1, ug — r| to obtain a contradiction. [

Theorem 3.5. If T’ is r-initial, then

0,

1<n<<r+1;
n—1, n

espr (Grr) = { .

<
=

Proof. We only have to show the case for n > r + 2. Let T = [0,r] and T = T}.41, then
T CT" CT”. By Lemma 3.4, cspr(G%.,) =n—1asn > r+2. Since cspy (G}) < n—1, it
is enough to show that cspr(G%.) < csprv (G, ). By Lemma 3.2, cspy(G7.,) < cspr (G)-

onto

Because G, —— G, by Prop. 2.2, cspr(Gh..) < cspr(Gh,). Therefore, cspr(Gh.) <
cspr (G%,) which completes the proof. [

In a T-graph G, the recursive clique of size i, denoted by RK;, is the clique with vertex
set defined by V(RK;) = {0}, and for m > 2, V(RK,,) = V(RK,,_1) U {z} where z is
the first vertex adjacent to all V(RK,,—1). As n — oo, denote the infinite recursive clique
in Gy by RK. Tt has been proved [10] that if "= {0} U [a, b], then for any n € Z* the
maximum recursive clique in G7 is also a maximum clique. To prove the sharpness of the
upper bound of cspp(Gh) for the family T = {0} U [a, b], we make use of the following
lemma.

Lemma 3.6. Let T = {0} U [a,b], b=Fka+1i, 0 <i<a—1. If f is a no-hole T-coloring
of G with span m — 1, where m < (k+ 1)a +1i — 1, then f must assign consecutive colors
to any K, in G.

Proof. Suppose f is a no-hole T-coloring of G with span m — 1. Let K, be an a-clique
in G. Let 0 < s = min f(K,), and suppose {s,s + 1,5 + 2,...,2} C f(K,) for some
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s<r<s+a—2,butx+1¢ f(K,). Because [a,b] C T, the rest of the colors that may be
assigned to K, are in the set B = [b+x+1, m—1]. Since |B| = m—1—(ka+i+z) < a—2—uz,
we have |f(K,)|<z+1+a—2—x=a— 1, which contradicts the fact that K, requires
a different colors.

Theorem 3.7. Let T'={0} U [a,b],b=Fka+iand 0 < i< a— 1, then

a—1, a+1<n<(k+1)q
n — 1, otherwise.

espr(GH) = {

Proof. Since the first a vertices in G form a clique, cspr(G%) = n — 1 for n < a. For
a+1<n < (k+1)a, it suffices to show cspT(Gg{H—l)a) =a—1,since a—1 < espr(Gatt) €
espr(GET%). Define a modular coloring g : V(GY¥ %) = [0,a—1] by g(z) = (z mod a).
Then g is onto. We show that g is a T-coloring. If x and y are adjacent in G, then either
lr—yl<a—-1lor|lz—yl >2b+1=ka+i+1=i+1(moda). In the former case,
g(z) # g(y); in the latter case, g(z) = g(y) only when i = a — 1. This is impossible,
since then |z — y| > k(a + 1), but V(Ggﬁq)a) = [0, k(a + 1) — 1]. Therefore g is a no-hole
T-coloring and cspp(G}) =a—1fora+1<n< (k+1)a.

In G'7, the vertex set of the infinite recursive clique RK consists of the following periodic
intervals of vertices, i.e., all the intervals have the same length, and the separations of any
two consecutive intervals are the same:

V(RK)=1[0,a—1JUb+a,b+2a—1]U[2b+2a,2b+3a —1]U.......

In the representation above, we call the set of vertices within one interval a period which
consists of a consecutive numbers. The first set of integers is the first period and so on. The
known result that the maximum recursive clique in G7. for any n is also a maximum clique
[10] implies that w(GH)+1 = w(G ) for all n € V(RK). By Lemma 3.1, cspr(GET!) = n
for all n € V(RK).

Between the second and third periods, it is enough to show that cspr(G%) =n — 1 for
b+ 2a+1< n < 2b+ 2a. We claim the following two cases, the remaining ones can be
obtained similarly.

Claim 1: cspT(G%T“J“bH) =2a+b

Assume to the contrary, cspT(GzT‘H'bH) < 2a +b. Then cspT(GQTC“LbH) =2a+b-1,
since w(G2aT0T) = (G29TP) > W(GZT71) and cspr(G2T) = 24+ b — 1. By Theorem
2.3, there exists an epimorphism f : G2Ta+b+1 — G%ﬁ“’b. Because f is onto, there is only
one color to be used exactly twice and other colors once. We call this one repetition.

In Gp, since n = 2a + b is the smallest number such that w(G’.) = 2a, f can only use
the 2a colors [0,a — 1] U [a+ b,2a+ b — 1] on any Ks,. There are two K3, in G%,?MH: Ay
and Ay where Ay = [0,a—1]U[a+b,2a+b— 1] and Ay = [1,a]U[a+ b+ 1,2a+ b]. Thus,
|A1 U Ag| = 2a + 2 but |f(A4; U A3)| < 2a, so at least two repetitions are necessary for f
on A U Ay, a contradiction. M

Claim 2: cspT(G,%r‘“LbH) =2a+b+1

Assume CspT(GQT“+b+2) < 2a + b+ 1, then there are the following two possibilities:
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GQT“+b+2) = 2a + b, then by Theorem 2.3 there is an epimorphism

2a+b+1,
G2otbt,

(i) Suppose cspr(
f: G%f’"’b“LQ — GQT‘H'IH'1 with exactly one repetition. There are only two Ky, in
[0,a—1]U[a+b,2a+b—1] and [1,a] U [a + b+ 1,2a + b], so on any Ks,, f can only use
the colors from [0, a] U [a + b, 2a + b]. There are three Ko, in G220+2;

Ay =1[0,a—1]U[a+b,2a +b—1]
Ay =[1l,a]U[a+b+1,2a + b
As=1[2,a+1]UJa+b+2,2a+ b+ 1].

Let A= A; UAyU A3, then |A| = 2a+ 4, while |f(A)| < 2a+ 2. This implies that at least
two repetitions are necessary, a contradiction.

(ii) Suppose cspT(G?ﬁ%H) = 2a + b — 1, then there is an epimorphism f :
G2Ta+b with exactly two repetitions. On any Ko, f(K2q) = [0,a — 1] U [a + b,2a + b — 1]
since [0,a — 1] U [a + b,2a 4+ b — 1] is the only Ky, in G2*"*. Hence, for the A defined
in (i) above, |f(A)| = 2a but |A| = 2a + 4, so at least four repetitions are necessary, a
contradiction. W

Analogously, between the m-th and the (m+1)-th periods for m > 3, one can apply an
argument similar to the above by replacing the clique Ko, by K,q-

Between the first and second periods, one needs to show that cspr(Gh) = n — 1 for
(k+1l)a+1<n<a+b=(k+1)a+i. Lettingn = (k+1)a+ s with 1 < s < i, we prove
this by induction on s.

G%a%—b—l—? N

Initial step) s = 1. We need to show cspp Gkt Datly _ k+1)a. Since any consecutive
T

a vertices in G form a clique, the modular coloring g defined at the beginning of the

proof of the theorem is the only proper coloring for Ggpkﬂ)a in a colors, so X(Gg““)“) —a

Furthermore, because 0 is adjacent to (k+1)a, we have X(Gg§+1)a+1) = a-+1. Therefore, it
is impossible to have G§E+1)a+1 oo, Gn for n < (k+1)a, thus CspT(GgﬁLl)aJrl) = (k+1)a.

(Inductive step) Assuming cspr (G4 ') =n — 2, we need to show cspr(G%) =n — 1 for
n=(k+1a+s, 2<s<i Ifa=1or 2, we are done. For if a = 1, then T is r-initial;
if a = 2, then i is either 0 or 1. Thus, we may assume a > 3. Suppose cspr(G}) =n — 2
and let f be a no-hole T-coloring f : V(G%}) — [0,n — 2] with exactly one repetition.
Denote f(j) by z; for 0 < j < n—1. By Lemma 3.6, any K, in G must use consecutive
colors, and any consecutive a vertices in G7. form a clique, thus the color 0 can only be
used exactly once and z; # 0 for j € [2,n — 3]|. Otherwise, there will be more than one
repetition.

If zg = 0 (or zp—1 = 0), then flgn (0} (or flan_(n—1}, respectively) is a no-hole 7-
coloring with span n — 3, which implies cspr(GE1) < n —3 (.- G% — {0} is isomorphic to
G41), contradicting the inductive hypothesis cspr (G ) = n — 2.

If 21 = 0, then the two cliques [0, a—1] and [1, a] can only use the colors [0, a —1]. Thus,
xg = x4 € [1,a — 1] is the only repetition in f. Since there is no other repetition allowed
and any K, must use consecutive a colors, we have z,1; =a+i— 1,1 <i<n—a—1,
and g =z, = a— 1. Because n = (k+ 1)a+s > (k+1)a+ 2, 0 is adjacent to n — 1. But
Tp_1—x9 =ka+s—1¢&T, acontradiction. Similarly, one can show x,_s # 0. Therefore,
0¢ f(V), a contradiction which claims cspr(G%) # n — 2.
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Suppose cspr(Gh) = n—i, i > 3, and let f be a no-hole T-coloring f : V(G%}.) — [0, n—i]
with exactly ¢ — 1 repetitions. Hence z; # 0 for j € [i,n —i—1]. If 20 =0 (or x,,—1 = 0),
then cspT(G%_l) < n—3, contradicting the inductive hypothesis. If o = z; (or ,—1 = ;)
for some j, then CSpT(G¥_1) < n — 3, a contradiction. Thus colors xy and x,, 1 are used
exactly once. This implies z; # 0 for j = 1,2...,i—1,n—i¢n—i+1,...,n—2, so
0 & f(V), a contradiction. Therefore, cspy(G}) #n—i,i>3. O

Thus far, we have shown for two families of T-sets, cspr(G%) = n — 1 for large n,
however, a characterization of T-sets with this property is still unknown. The following is
an example of T-set that does not have this property.

Example. If T = (ZtU{0}) —[1,r],r € ZT, then

n—1,

.

T,

Proof. In G, the first r 4+ 1 vertices form a clique, so cspy(G%) =n —1forn < r+1,
and cspr(G%) = r for n > r + 1. Define a modular coloring f : V(G}) — {0,1,2,...,r}
by f(u) = (v mod (r + 1)), then f is a no-hole T-coloring. Hence cspr(G%) = r for
n>r+1. 0O

REFERENCES

[

. G. Chang, S. Juan and D. Liu, No hole (r + 1)-distance coloring for bipartite graphs, manuscript.

. M. B. Cozzens and F. S. Roberts, T-colorings of graphs and the channel assignment problem, Con-
gressus Numerantium 35 (1982), 191-208.

3. M. B. Cozzens and F. S. Roberts, Greedy algorithms for T-colorings of complete graphs and the

meaningfulness of conclusions about them, J. Comb. Inform. Syst. Sci. 16 (1991), 286-299.

[\

4. J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites, J. Comb. The-

ory A 68 (1994), 169-183.
5. W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-1514.
P. Hell, private communication.
7. P. Hell and J. Nesetiil, On the Complexity of H-coloring, Journal of Combinatorial Theory, Series B
48 (1990), 92 - 110.
D. D.-F. Liu, T-coloring of graphs, Discrete Math 101 (1992), 203 - 212.
9. D. D.-F. Liu, On a conjecture of T-colorings, Congr. Numer 103 (1994), 27-31.
10. D. D.-F. Liu, T-Graphs and the channel assignment problem, Discrete Math 161 (1996), 197-205.
11. J. H. Rabinowitz and V. K. Proulx, An asymptotic approach to the channel assignment problem, STAM
J. Alg. Disc. Math. (1985), 507-518.
12. A. Raychaudhuri, Further results on T-coloring and frequency assignment problem, STAM J. Disc. Math.
7 (1994), 605-613.
13. F. S. Roberts, T-colorings of graphs: recent results and open problems, Disc. Math. 93 (1991), 229-
245..
14. F. S. Roberts, No-hole 2-distant colorings, Mathl. Comput. Modelling 17 (1993), 139-144.
15. D. Sakai and C. Wang, No-hole (r + 1)-distant colorings, Discrete Math 119 (1993), 175-189.
16. B. A. Tesman, T-colorings, List T-colorings and set T-Colorings of Graphs, Ph.D. Dissertation,
Dept. Math., Rutgers University (1988).

o

®



