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Abstract

Given a graph, a no-hole 2-distant coloring (also called N-coloring)
is a function f that assigns to each vertex a non-negative integer
(color) such that the separation of the colors of any pair of adja-
cent vertices must be at least 2, and all the colors used by f form a
consecutive set (the no-hole assumption). The minimum consecutive
N-span of G, csp,;(G), is the minimum difference of the largest and
the smallest colors used in an N-coloring of G, if there exists such
a coloring; otherwise, define csp, (G) = co. Here we investigate the
exact values of csp, (@) for unit interval graphs (also known as 1-unit
sphere graphs). Earlier results by Roberts [18] indicate that if G is
a unit interval graph on n vertices, then csp, (G) is either 2x(G) — 1
or 2x(G) — 2, if n > 2x(G) — 1; csp;(G) = oo, if n < 2x(G) — 1,
where x(G) denotes the chromatic number. We show that in the
former case (when n > 2x(G) — 1), both values of csp, (G) are at-
tained, and give several families of unit interval graphs such that
cspy (@) = 2x(G) — 2. In addition, the exact values of csp,(G) are
completely determined for unit interval graphs with x(G) = 3.

1 Introduction

The no-hole 2-distant coloring is originated from T-coloring, a channel as-
signment problem introduced by Hale [7]. Suppose several transmitters
or stations, and a forbidden set T' (called T-set) of non-negative integers
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(with 0 € T') are given. We need to assign to each transmitter or station a
non-negative integral channel under the constraint that if two transmitters
interfere, then the difference of their channels does not fall within the 7T-set.
Two transmitters may interfere due to various reasons such as geographic
proximity and meteorological factors. To formulate this problem, we con-
struct a graph G such that each vertex represents one transmitter, and two
vertices are adjacent if their corresponding transmitters interfere.

Thus, we have the following definition. Given a T-set and a graph G, a
T-coloring of G is a function f : V(G) — Z+ U {0} such that

[f(@) = f)l ¢ T if zye E(G).

A no-hole T-coloring of G is a T-coloring f such that f(V) is a consecutive
set.

The span of a T-coloring f is the difference of the largest and the smallest
colors used in f(V). The T-span of a graph G, sp;(G), is the minimum
span among all possible T-colorings of G. The variable T-span for different
graphs and different T-sets has been studied extensively by several authors
(see [2, 3, 4, 6, 11, 12, 13, 15, 16, 20]).

It is known [3] that for any given T-set and graph G, a T-coloring
always exists. However, a no-hole T-coloring does not have this property.
For instance, take T' = {0,1} and G = K5. Hence, we define the consecutive
T-span of a graph G, denoted by cspy(G), by the minimum span of a no-
hole T-coloring if there exists such a coloring; and define csp;(G) = oo
otherwise.

For the case that T = {0,1} and T" = {0,1,2,...,r}, a no-hole T-
coloring is also called an N-coloring (in [18]) and an N,-coloring (in [19]),
respectively. That is, an N,-coloring of a graph G is a function f : V(G) —
ZT U {0} such that f(V) is consecutive and it satisfies the condition

[f(@) = f)l zr+1, if zy e E(G).

Roberts [18] and Sakai and Wang [19] studied the N-coloring and the
N,.-coloring, respectively. Among the findings in [18, 19] are the results
about the existence of an N-coloring and an N,-coloring, respectively, for
special graphs such as paths, cycles, bipartite graphs and 1-unit sphere
graphs. Moreover, if it is the case that such a coloring exists, the authors
also gave upper and lower bounds of the span.

The exact values of cspy(G) for some families of graphs and T-sets were
studied by Liu and Yeh [14] in which the authors proved: If T is r-initial
(ie. T ={0,1,2,...,7} UA, where A contains no multiple of (r + 1)) or
T ={0,a,a+1,a+2,---,b}, then for any large n, there exists a graph G
on n vertices such that cspp(G) = n — 1. The exact values of csp, (G) for
bipartite graphs were investigated by Chang, Juan and Liu [1]. In [1], the



authors determined the values of csp,.(G) for all bipartite graphs with at
least r—2 isolated vertices, and completely determined csp,(G) for bipartite
graphs.

A graph G = (V,E) is a k-unit sphere graph if there is a function g
from V(G) into the Euclidean k-space R such that for all  # y in V,
xzy € B if and only if d(g(x)—g(y)) <1, where d denotes the Euclidean
distance between two points in R¥. The 1-unit sphere graphs are also known
as unit interval graphs or indifference graphs in the literature (see [5]).

If T =1{0,1,2,...,7}, denote cspp(G) by csp,(G). In this article, we
focus on the exact values of csp;(G) for unit interval graphs. In Section
2, we cite some known results in T-colorings and no-hole T-colorings that
will be used later in our proofs. Section 3 is focused on the computation
of the exact values of csp;(G) for unit interval graphs G. In particular,
csp; (G) is obtained for some families of unit interval graphs, and csp, (G)
is completely determined for unit interval graphs with x(G) = 3, where
X(G) denotes the chromatic number of G.

2 Preliminaries

It is well-known [3, 10] that if 7" is r-initial, then the following holds:
spr(G) = (x(G) — 1)(r + 1) for all graphs G. (%)

By the definition of a no-hole T-coloring, if csp;-(G) is finite, a trivial upper
bound for csp(G) is n—1, where n = |V(G)|. Since any no-hole T-coloring
is also a T-coloring, by (x), we have:

Proposition 1 For any positive integer v and any graph G on n vertices.
If esp,(G) < oo, then (x(G) —1)(r+1) < csp,(G) <n—1.

It is well-known that unit interval graphs are perfect (see [5]), hence
for any unit interval graphs G, x(G) = w(G), where w(G) is the size of a
maximum clique in G. Another well-known result that will be used in this
article is due to Roberts [17]: A graph G = (V, E) is a unit interval graph if
and only if it has a compatible vertex ordering, i.e. an ordering v1, va,...,Un
of vertices of G so that if ¢ < j < k and v;vg € E, then v;v;,vjv, € E.

Using the compatible vertex ordering of a unit interval graph, Roberts
[18] proved implicitly, without mentioning the variable csp,(G), the follow-
ing:

Theorem 2 ([18]) If G is a unit interval graph on n vertices, then

<2x(G) =1, ifn>2x(G)—1;
esp(G) { = o0, if n < 2x(G) — 1.



The theorem above was extended by Sakai and Wang [19] who showed
the following:

Theorem 3 ([19]) If G is a unit interval graph on n vertices, then

< (r+1x(G) -1, ifn>(r+1)x(G);
CS"T(G){ — o, ifn < (r+(x(C) — 1).

Figure 1 shows an example of Theorem 3.

Figure 1: A unit interval graph with x(G) = 4 and cspy(G) = 11.

Although from the theorem above the problem of determining the exis-
tence of an N,-coloring is not completely settled for general values of r, for
r = 1, referring to Theorem 2, Sakai and Wang [19] completed the answer
by confirming the case n = 2x(G) — 1:

Theorem 4 ([19]) If G is a unit interval graph on n = 2x(G)—1 vertices,
then

2x(G) =2, if G has a unique mazimum clique;
o0, otherwise.

espy(G) = {

3 Main results

In this section, we investigate the exact values of csp; (G) for unit interval
graphs G. According to Theorems 2 and 4, we consider unit interval graphs
with more than 2x(G) — 1 vertices. By Proposition 1 and Theorem 2, the
only possible values of csp, (G) for such graphs are 2x(G)—2 and 2x(G) —1.
We show both values are attainable, and give complete solutions of csp; (G)
for unit interval graphs with x(G) = 3.

Without loss of generality, all the graphs considered in this section are
simple and connected. Throughout the section, unless indicated, we sup-
pose G = (V, E) is a unit interval graph with a compatible vertex ordering
P = v1,v2,...,vp, where n = |V(G)| > 2x(G) — 1. The distance of two
vertices v; and v; on P, denoted by dp(u,v), is defined as |i — j|. And we
let

A:={v: v is in some maximum clique of G}; B :=V(G) — A.



Theorem 5 Suppose G = (V, E) is a unit interval graph on n wvertices,
n > 2x(G) — 1. If |B| < x(G) — 1, then csp,(G) = 2x(G) — 1.

Proof. Suppose to the contrary that csp; (G) = 2x(G) —2, and let f be an
N-coloring of G, f: V(G) — {0,1,2,...,2x(G) — 2}. Since x(G) = w(G),
we have |f(u) — f(v)| > 2 for any maximum clique W and w,v € W. This
implies that f(x) € {0,2,4,...,2x(G)—2} for all z € A. Hence there must
exist at least x(G) — 1 vertices in B that are labeled by {1,3,...,2x(G) —
3}, contradicting the assumption |B| < x(G) — 1. Therefore, csp,(G) =

2x(G) — 1. O
Theorem 6 Suppose G = (V, E) is a unit interval graph onn > 2x(G)—1
vertices and P = vy, va, ..., v, 1S a compatible vertex ordering of G. If
X(G) = m > 3 and there exists a subset {vs11,Vs42,...,Vs4tm-1} C B for

some 0 < s <n—m+1, then csp;(G) = 2m — 2.

Proof. It suffices to find an N-coloring for G with span 2m — 2. We define
a coloring f by first labeling the vertices vs41,Vst2;---sVUstm—1 € B by
fossi) =2i—1,1 < i <m—1, that is f(B) = {1,3,5,...,2m — 3}.
Secondly, label the vertices preceding vsi1 (if there is any), backwards,
by repeating the pattern of colors < 2m — 2, 2m — 4, ...,4,2,0 > (i.e.,
flvs) = 2m — 2, f(vs—1) = 2m — 4, f(vs_2) = 2m — 6, etc., until vy is
colored). Finally, repeat the pattern of colors < 0,2,4,...,2m—4,2m—2>>
to the remaining vertices (i.e., f(Vs4m) =0, f(Vstm+1) = 2, etc., until the
last vertex v, is colored). See Figure 2 as an example.

Because n > 2m — 1, the even colors 0,2, ...,2m — 2 are all used by f.
Combining this with the fact that f(B) = {1,3,5,...,2m — 3}, f is onto
with span 2m — 2. It is not hard to verify that f is indeed an N-coloring.
We leave the details to the reader. O

Figure 2: A unit interval graph with x(G) = 4 and csp,(G) = 6.



Theorem 7 Suppose G is a unit interval graph on n vertices with x(G) =
m and n > 2m — 1. If there exists a compatible vertex ordering P =
v1,02,...,U, such that A C {v;,viq1,...,v5}, wheret > 1, j—i+1=Fkm
for some positive integer k, and n > (k+ 1)m — 1, then csp,(G) = 2m — 2.

Proof. It suffices to find an N-coloring for G with span 2m — 2. Define
the coloring function f by first labeling vertices v;, v411, ..., v; by using the
pattern < 0,2,4,...,2m —2 >. (i.e. f(v;) =0, f(vi41) = 2, etc.) Then
f(vj) =2m — 2, since j —i + 1 = km for some positive integer k.

Next, label the vertices prior to v; (if there is any) by the pattern <
2m — 3,2m — 5,...,5,3,1 >, backwards, until the first vertex on P is
labeled. Finally, label the vertices after v; (if there is any) by the pattern
< 1,3,5,...,2m — 5,2m — 3 > until the last vertex is labeled. By the
assumptions that m > 3, A C {v;,vi41,...,v;}, and n > (k+1)m—1, it is
easy to verify that f is an N-coloring. |

Corollary 8 If G is a unit interval graph with a unique mazximum clique,
then

2x(G) =2, ifn>2x(G)-1;

0, otherwise.

i) |

Proof. The result follows from Theorems 2, 4, and Theorem 7. a

Theorem 6 gives a result for the case that B contains a subset of consecu-
tive x(G) —1 vertices on a compatible vertex ordering. In the next theorem,
we prove that, under some conditions, the same result also holds when B
has vertices that are scattered along the compatible vertex ordering. This
result is also a generalization of Theorem 7.

Theorem 9 Suppose G is a connected unit interval graph on n vertices,
X(G) =m >3, n>2m—1, G has a compatible vertex ordering P =
V1,02, ..., U, and there exists {vi, ,Viy, ..., Vi, _,} C B, where 1 < i1 <
ia < ...<im-1 <n. Then csp;(G) =2m—2 if there exist 1 < a,b <m—1
such that p = (m — 1 —a — b)/2 is a non-negative integer, and

iien = i; + k;jm 4+ 1 for some positive integer k;, if j € C}
It ij+ 1, ifj ¢ C,

where C = {1,...,p,p+a,p+a+bp+a+b+1,....m—2} (ifp=0,
then C = {a}).

Proof. It suffices to find an N-coloring of G with span 2m — 2. We define



the coloring f : V(G) — {0,1,2...,2m — 2} by:

45 +2b — 3, if1<j<p, k=0;
2(j —p—a)-3, ifp+1<j<p+a, k=0;
, ) 2—-p—a)—1, ifpta+1<j<p+a+bd, k=0;
iy h) = A4Gj—p—a)—2b—1, fp+a+b+1<j<m—1, k=0;
Jvy;) + 142k, it je CU{m—1},and

1<k<ijy1—i;—1 (im=n+1).

then color the vertices preceding v;, (if there is any) by repeating the pat-
tern <« 2b—2,2b—4,...,2b >, backwards, until the first vertex is colored.
All the colors by f above are taken under modular 2m. See Figure 3 for an
example.

We call the set of vertices {v;; +1,vi; 42,...,0i;,, 1} block B for each j €
C, the vertices preceding v;, (if there is any) block By, and the vertices after
v;,,_, (if there is any) block By, 1. Note that V(G) = {v,, vip,.--,v;,,_, JU
BO UjGC Bij U Bm,]_.

The last case in the function f defined above gives labels for vertices
in those B blocks except the ones in By. Indeed, if j € C U {m — 1}, by
definition of f, we have

Jijok) = f(vi,) + 142k = f(vi;,,) =3+ 2k (mod 2m), (xx)

except the second equality holds only for j € C. Note that since f(v1) =
2b + 1, the pattern < 2b—2,2b—4,...,2b > used, backwards, for vertices
in By (if v1 > 1) is a formula similar to the last part in (**), that is,
fviy—14%) = f(vi,) =3+ 2k (mod 2m) for all k, —(iy —2) <k <0.

258100246 902463810136 81002 4 7100 2

B B B B B

Figure 3: An example witha =1,b=2,p =1, x(G) = 6 and csp,(G) = 10.



From the coloring f, one can observe that the vertices v, , vig, ..., vi,,
receive distinct odd colors {1,3,5,...,2m — 3}, and other vertices receive
even colors {0,2,4,...,2m—2}. Since C' # () and for any j € C, ij11 —i; —
1= kjm > m, so {f(vij-‘rl)a f(vij-‘r?)a Tt f(Uin*l)} = {07 2.4,--+,2m —
2}. Hence, f is onto.

Now it remains to show that f is an N-coloring. It suffices to claim that
for any uv € E(G), neither one of the following two is possible:

(A) f(u) = f(v) =2t for some 0 <t <m —1;

(B) f(u) =2t —1 and f(v) € {2t,2t — 2} for some 1 <t <m — 1.

To show that (A) is impossible, suppose f(u) = f(v) = 2t for some
0 <t <m—1. Since u and v are adjacent, u and v together with all the
vertices between them on P form a clique K. If u and v belong to the same
block or if they belong to two non-consecutive blocks, then it is clear that
|K| > m+ 1, a contradiction.

Now we assume that u and v belong to consecutive blocks. Without
loss of generality, assume the ordering of v and v on P is u before v, and
suppose dp(u,v) is the smallest. Let u € B;, then there are the following
two cases:

Case A.l. j € {0,1,....p—1,p+a+bp+a+b+1,....m—2}
Then v € B;,,,. Since dp(u,v) is the smallest, without loss of generality,
we may assume U = Uy +pm+s for some [ so that 0 < s <m —1 (if j =0,
let u = v;, _14(5—m) for some s, 0 < s < m), and v = v;;,, 14 for some
1 < g <m — 1. Hence, by definition of f, we have

2t = f(vij+lm+5) = f(vij+3) = f(vij+1) —3+2s (mOd 2m)
= f(vij+1+q) = f(vij+1) +1+2g (mOd Zm)

This implies that ¢ = s—2 (mod m) and |K| > (m—s+1)+14+(s—2) = m.
(Note that this also holds if j = 0, since f(vs,—14(s—m)) = f(vi,) =3 +
2(s —=m) = f(vi;) —3+2s (mod 2m).) Hence K is a maximum clique,
contradicting v;,,, € KN B.

Case A.2. j € {p,p+ a}: Here we give the proof for j = p, the proof
for j = p+a can be obtained by a similar approach. Suppose u € By, then
v € Bpyq. Since dp(u,v) is the smallest, without loss of generality, we may
assume U = Vi, {i;m+s for some [, 0 < s <m —1, and v = v;,,, 4, for some
1 < g <m—1. Then we have:

2t = f(vip+lm+5) = f(vip+3) = f(vip) +1+2s
= (2b+4p—3)+1+2s (mod 2m)
= 2s—2a—4 (mod2m) (since 4p=2(m —1—a—"D))
= f(vip+a+q) = f(vip+a) + 1 + 2q
= (-3)+1+2¢=2¢—2 (mod 2m).



Therefore, we have g = s —a—1 (mod m), so |[K| > (m —s+1)+a-+
(s —a—1) = m, contradicting vy, € K N B.

To show that (B) is impossible, suppose there exists uv € E(G) such
that f(u) = 2t — 1 and f(v) € {2t — 2,2t} for some 1 < ¢t < 2m — 1.
Then u = vy, for some 1 < j <m —1. On P, the vertices between v and v
together with u, v form a clique K. Because u = v;; € B, dp(u,v) <m—1.
We claim the following two possible cases:

Case B.1. j e {1,2,....p,p+a+b+1,p+a+b+2,...,m—1}: Since
dp(u,v) <m —1, one has v € B; U B; 1. If v € By, then v = v, for
some 1 < s < m — 2. By definition of f, f(v) = f(v;;) +1+2s =2t + 25
(mod 2m) € {2t —2,2¢}. This implies s € {0, m — 1}, a contradiction. The
proof for v € B;_; is similar and we should omit it.

Case B.2. j € {p+1,p+2,...,p+a}orj€ {p+a+1l,p+a+2,...,p+
a+ b}: We give a proof here for the case j € {p+1,p+2,...,p+ a}, the
proof for the case j € {p+a+1,p+a+2,...,p+ a+ b} can be obtained
by a similar process. Suppose u = vppi for some 1 < k' < a < m — 1.
Then v € By, U Bptq. By definition of f, 2t — 1 = f(u) = 2(k' —a) — 3
(mod 2m), so f(v) € {2(k' —a) —4,2(K' —a) —2} (mod 2m).

If v € By, then v = v, {5 for some 1 < s < m — 1. Hence f(v) =
f(vi,)+1+25 = dp4+-2b—3+1+2s = 25—2a—4 € {2(k'—a)—4,2(k' —a)—-2}
(mod 2m). Therefore, s € {k’,k’ + 1}. Because ip11 = ip + kpym + 1 for
some positive integer k,, we have d,(u,v) >m — (' +1)+k =m—1,a
contradiction.

If v € Byyg, then v = v, 15 for some 1 < s < m — 2. Hence, by
definition of f, f(v) = f(vi,,,) +1+25 =25 -2 = 2(k' —a) —4 or
2(K' —a) —2 (mod 2m). Therefore, we have s = k' —a—1or k' —a
(mod m) = m+ (k' —a—1) or m+ (k' —a). This implies dp(u,v) >
a—k+s=a—kK +m+ (k' —a—1)=m— 1, a contradiction. O

In the next three theorems, we give complete solutions for unit interval
graphs with x(G) = 3.

Theorem 10 Suppose G is a unit interval graph on n vertices, n > 5, and
X(G) = 3. Then csp,(G) = 4, if there exist u,v € B, u # v, such that
wv € E(G) or dp(u,v) # 2 (mod 3) on some compatible vertex ordering
P =wv1,v2,...,0,.

Proof. If there exist u,v € B such that uwv € E(G), then dp(u,v) =1 for
any compatible vertex ordering P, for otherwise u and v are contained in
some maximum clique. Therefore, by Theorem 6, csp, (G) = 2x(G)—2 = 4.

Suppose there exist u,v € B such that uv ¢ E(G) and dp(u,v) # 2
(mod 3). If dp(u,v) =1 (mod 3), by Theorem 9 with a = b = 1, we have
cspp (G) = 4.



Suppose dp(u,v) =0 (mod 3). Let © = v; and v = v, then i = j (mod
3). Define the coloring f by:

1, ifk=0;
3, ifk=j i

floigg) =< 4, k=1 (mod3),1<k<j—i—1;
0, ifk=2(mod3), 1<k<j—i—1;
2, ifk=0(mod3), 1 <k<j—i—1;

for the vertices preceding v; (if there is any), use the pattern < 4,2,0 >,
backwards, and for the remaining vertices (if there is any), use the pattern
< 0,2,4>. It is easy to verify that f is an N-coloring for G, so csp;(G) =
4. O
To complete the family of unit interval graphs with x(G) = 3, it re-
mains to consider the case that |V(G)| > 5 and B has exactly two vertices
(for which we have the result below). If |B| = 1, by Theorems 4 and 5,
cspy(G) = 5, if n > 5; and csp;(G) = oo, otherwise. If B contains three
vertices v, < vp < v. on P, then at least one of the pairs (vg, vp), (b, ve) OF
(va, ve) has distance Z 2 (mod 3) on P, so c¢sp;(G) = 4 by Theorem 10.

Theorem 11 Suppose G is a connected unit interval graph with x(G) = 3,
[V(G) =n>5, and P = v1,v2,- -+, v, 18 a compatible vertex ordering. If
B = {v;,v;}, where j > i and j —i =2 (mod 3). Then csp;(G) =5 if and
only if VitkVitkr2 € E(G) for allk Z0 (mod 3) and 2 <k < j—i—4.

Proof. (=) Assume csp,(G) = 5. Suppose to the contrary, v;i,Vitk+2 ¢

E(G) for some k £ 0 (mod 3) and 2 < k< j—1i—4.
If £ =1 (mod 3), then define the coloring f by f(v;) = 1, f(v;) = 3;

for vertices vit1, Vit2, ..., Vitk+1, repeat the pattern < 4,2,0 > (i.e.,
f(uis1) = 4, -+, f(visk) = 4, and f(viyps1) = 2); for vertices vippi2,
Vitk+3, --- Uj_1, repeat the pattern < 4,0,2 > (then f(v;_1) = 0); for

vertices preceding v;, repeat the patter < 4,2,0 > backwards; and for
the vertices after vj;, repeat the pattern < 0,2,4 > until the last ver-
tex is colored. This gives an N-coloring for G with span 4, contradicting
cspp(G) = 5.

If £ = 2 (mod 3), then define the coloring f by f(v;) = 1, f(v;) =
3; for vertices viy1,Vita,...,Vitk+1, Tepeat the pattern < 4,0,2 > (i.e.,
f(viyr) = 0 and f(vipri1) = 2); and for vertices viypt2, Vipht3, .-, Vj—1,
repeat the pattern < 0,4,2 > (then f(v;j_1) = 0); for vertices preceding
v;, repeat the pattern < 4,2,0 > backwards; and for the vertices after v;,
repeat the pattern < 0,2,4 > until the last vertex is colored. This gives
an N-coloring for G with span 4, a contradiction.

(<) Suppose viirVitkr2 € E(G) for all k 2 0 (mod 3) and 2 < k <
j—1i—4. Suppose csp;(G) = 4 and let f : G — {0,1,2,3,4} be an N-
coloring for G. Then f(v;), f(v;) € {1,3} and f(z) € {0,2,4} for any

10



x # v;,vj, since B = {v;,v;}. Assume f(v;) =1 and f(v;) = 3 (the proof
for the case that f(v;) = 3 and f(v;) = 1 is similar), then f(vi41) = 4.
Because G is connected, vjvi41 € E(G) for all 1 <1 < n — 1. Combining
this with the assumption that vi4xviyr+o € E(G) for all k #Z 0 (mod 3)
and 1 < k < j—i— 3 (Since Viy1,vj—1 € A and v;,v; € B, we have
Vit1Vits, Vj—svj—1 € E(QG)). One must have f(vi1y) = 4 for all z =1
(mod 3), 1 < & < j —i— 1, implying that f(v;—1) = 4, contradicting
fluj) =3. O

In conclusion, we have

Theorem 12 Suppose G is a connected unit interval graph on n vertices
and x(G) = 3. Let P = vy,va,- -+, v, be a compatible vertex ordering of G.
Then

oo, ifn<b, orn=>5and|B|=1;

5, ifn>5and |B| =1, orn>5,B={v;,v;}, where
cspy(G) = j>i,j—i=2 (mod 3), and vy Vitk2 € E(GQ)

for all k=0 (mod 3) and 2 < k <j—i—4;
4,  otherwise.

Acknowledgment. The authors are grateful to the referee for an imme-
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