Department of Mathematics California State University Los Angeles Master's Degree Comprehensive Examination in

NUMERICAL ANALYSIS SPRING 2016

Instructions

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No calculators.
- · Closed books and closed notes.

PART A: Do only TWO problems

- 1. a. The QR method is a technique for finding approximations to the eigenvalues of a square matrix A.
 - (i) [4 pts] Write down and briefly explain the QR algorithm. Be sure to briefly discuss the convergence aspect of the QR algorithm.
 - (ii) [6 pts] Perform one iteration of the QR algorithm when applied to the matrix $A = \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$.
 - (iii) [4 pts] Give two possible drawbacks of QR algorithm and suggest remedies to overcome these drawbacks.

b. Let
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 2 & 1 \end{pmatrix}$$
.

- (i) [7 pts] Factor A into A = QR, where R is an upper triangular matrix and Q is a matrix whose columns are orthonormal.
- (ii) [4 pts] Use the factorization from part (i) to solve the least square problem Ax = b, where $b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

2. Consider a system Ax = b, where

$$A = \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

- a. [7 pts] Perform one iteration of the Gauss-Seidel method from the starting point $x^{(0)} = (2,2,2)^T$.
- b. [4 pts] By analyzing the eigenvalues of its iteration matrix, determine whether the Gauss-Seidel method converges when applied to the above system.
- c. [7 pts] Given a linear system Ax = b where A is an $n \times n$ matrix and b an n-vector, write A = M N where M is nonsingular splitting matrix. Consider the iterative scheme

$$x^{(k+1)} = Gx^{(k)} + c, \ k = 1, 2, 3, ...,$$
 where $G = M^{-1}N$ and $c = M^{-1}b$.
Show that $\|x^{(k)} - x\| \le \|G\|^k \|x^{(0)} - x\|$.

d. [7 pts] Suppose an iterative method for solving a linear system Ax = b reduces the initial error e_0 by a factor of 10^{-4} in 50 iterations. How many iterations will it need to reduce e_0 by a factor of 10^{-5} ?

3. Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & -1 \\ 4 & -1 & 6 \end{bmatrix}$$
 and $c = \begin{bmatrix} 3 \\ 10 \\ 11 \end{bmatrix}$

- a. [9 pts] Solve Ax = c if possible, using Gaussian elimination with partial pivoting.
- b. [6 pts] Give flop counts when solving Ax = c via GE, for the following three cases: (i) without pivoting, with (ii) partial pivoting and (iii) complete pivoting (when A is a general n x n matrix) with brief supporting reason.
- c. [4 pts] Write PA = LU for A in part (a) above, where P is the appropriate permutation matrix. Is this decomposition unique? Why or why not?
- d. [6 pts] Write the Cholesky factors of $B = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$, if possible. From your result, conclude whether B is positive definite (provide reason).

PART B: Do only TWO problems

1. Consider the boundary value problem defined on a closed bounded domain *D*:

$$u_{xx} + u_{yy} = 0$$
 in D (1)
 $u(x,y) = f(x,y)$ on the boundary of D

For parts (a) and (b), let $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\}$ with boundary conditions

$$u(x,0) = x^2$$
, $u(x,1) = x^2 - 1$,
 $u(0,y) = -y^2$, $u(1,y) = 1 - y^2$

- a. [12 pts] Using the standard 5-point difference scheme for approximating the PDE, determine the system of linear equations that is obtained when $\Delta x = \Delta y = 1/3$. Simplify and write the system in the matrix form $A\mathbf{u} = \mathbf{b}$.
- b. [5 pts] For arbitrary Δx and Δy , explain how you know the equations in (a) have a unique solution.
- c. [8 pts] Consider the PDE (1) in the trapezoidal region shown below ($\Delta x = \Delta y = h = 1$) with boundary condition u(x,y) = 2x along the boundary. Use the weighted 5-point approximation to find an approximation to u at point v.

2. a. [10 pts] Show that the explicit method

$$\frac{u_{i,j+1} - u_{i,j}}{k} = a \left(\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{h^2} \right) + bu_{i,j}$$

3

Where $h = \Delta x$ and $k = \Delta t$ for approximating $u_t = au_{xx} + bu$ (a, b constants, a>0) is consistent.

b. [5 pts] Write an explicit consistent scheme for approximating $\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{x^2 + 1} \frac{\partial u}{\partial x} \right]$

(Do not simplify your answer)

c. [10pts] Using the 4-point explicit method for approximating the differential equation and central-differences for approximating the boundary conditions, with $\Delta x = 0.1$ and $\Delta t = 0.0025$, find and simplify the system of finite-difference equations for approximating the initial boundary value problem below.

$$\begin{cases} u_t = u_{xx}, \\ u = 0, & when \quad t = 0, 0 \le x \le 1 \\ u_x = u, x = 0, t > 0 \\ u_x = -u, x = 1, t > 0 \end{cases}$$

3. The unidirectional wave equation

$$\begin{cases} u_t + 3u_x = 0 \\ u(x,0) = f(x) \end{cases}$$

can be solved by using an upwind scheme $\frac{u_{i,j+1} - u_{i,j}}{k} + 3\left(\frac{u_{i,j} - u_{i-1,j}}{h}\right) = 0$ where $h = \Delta x$ and $k = \Delta t$ are the given grid sizes.

a. [5 pts] Find the CFL condition for the above scheme.

b. [10 pts] Perform the von Neumann analysis to show that the scheme is stable under the CFL condition found in part (a).

c. [10pts] Prove that under the same CFL condition, the scheme satisfies a local maximum-minimum principle, i.e.

$$\min(u_{i-1,j}, u_{i,j}) \le u_{i,j+1} \le \max(u_{i-1,j}, u_{i,j})$$