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Abstract

Let G be a connected graph. For any two vertices u and v, let
d(u, v) denote the distance between u and v in G. The maximum

distance between any pair of vertices is called the diameter of G and
denoted by diam(G). A radio-labeling (or multi-level distance labeling)

with span k for G is a function f that assigns to each vertex with a
label from the set {0, 1, 2, · · · , k} such that the following holds for any

vertices u and v: |f(u) − f(v)| ≥ diam(G) − d(u, v) + 1. The radio

number of G is the minimum span over all radio-labelings of G. The

square of G is a graph constructed from G by adding edges between
vertices of distance two apart in G. In this article, we completely
determine the radio number for the square of any path.
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1 Introduction

Radio-labeling (cf. [3, 4]) is motivated by the channel assignment problem

introduced by Hale [9]. Suppose we are given a set of stations or transmit-

ters, the task is to assign to each station (or transmitter) with a channel

(non-negative integer) such that the interference is avoided. The interference

is closely related to the geographical locations of the stations – the closer

are the stations the stronger the interference that might occur. To avoid in-

terference, the separation of the channels assigned to near-by stations must

be large enough. To model this problem, we construct a graph so that each

station is represented by a vertex, and two vertices are adjacent when their

corresponding stations are close. The ultimate goal is to find a valid labeling

such that the span (range) of the channels used is minimized.

Let G be a connected graph. For any two vertices u and v, the distance

between u and v, denoted by dG(u, v) (or d(u, v) when G is understood in

the context), is the length of a shortest (u, v)−path in G. A distance-two

labeling with span k is a function, f : V (G) → {0, 1, 2, · · · , k}, such that the

following are satisfied:

|f(u) − f(v)| ≥

{

2, if d(u, v) = 1;
1, if d(u, v) = 2.

The λ-number of G is the smallest k such that G admits a distance-two label-

ing with span k. Since introduced by Griggs and Yeh [8] in 1992, distance-two

labeling has been studied extensively (cf. [1, 2, 5 - 8, 10, 11, 14, 15, 17, 18]).

Radio-labeling extends the number of interference level considered in

distance-two labeling from two to the largest possible – the diameter of G.

The diameter of G, denoted by diam(G), is the maximum distance among

all pairs of vertices in G. A radio-labeling (or multi-level distance labeling

[16, 12]) with span k for a graph G is a function, f : V (G) → {0, 1, 2, · · · , k},

such that the following holds for any u and v:

|f(u)− f(v)| ≥ diam(G) − d(u, v) + 1.
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The radio number of G, denoted by rn(G), is the minimum span of a radio-

labeling for G. Note that if diam(G) = 2, then radio-labeling and distance-

two labeling become identical.

The radio number for different families of graphs has been studied by

several authors. The radio numbers for paths and cycles were investigated

by Chartrand et al. [3], Chartrand, Erwin and Zhang [4], and Zhang [19],

and were completely solved by Liu and Zhu [16]. The radio number for trees

was investigated in [12].

The square of a graph G, denoted by G2, is the graph constructed by

adding to G with edges connecting pairs of vertices that are distance two

apart in G. We call the square of a path (or cycle, respectively) a square

path (or square cycle, respectively). The radio number for square cycles has

been studied in [13], in which the exact values were determined for most of

the square cycles, while bounds were given for others.

In this article, we completely determine the radio number for square

paths.

Theorem 1 Let P 2
n be a square path on n vertices and let k = bn

2
c. Then

rn(P 2
n) =

{

k2 + 2, if n ≡ 1 (mod 4) and n ≥ 9;
k2 + 1, otherwise.

2 Lower Bound

In this section, we establish the lower bound for Theorem 1. Through-

out the article, we denote a path with n vertices by Pn, where V (Pn) =

{v1, v2, · · · , vn} and E(Pn) = {vivi+1 : i = 1, 2, · · · , n − 1}. Hence, V (P 2
n) =

V (Pn) and E(P 2
n) = E(Pn) ∪ {vivi+2 : i = 1, 2, 3, · · · , n − 2}. The diameter

of P 2
n is bn

2
c.

We denote the distance between two vertices u and v in P 2
n by d(u, v).

Observe,
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Proposition 2 For any u, v ∈ V (P 2
n), we have

d(u, v) = d
dPn

(u, v)

2
e.

A center of Pn is defined as a “middle” vertex of Pn. An odd path P2k+1

has only one center vk+1, while an even path P2k has two centers vk and vk+1.

For each vertex u ∈ V (Pn), the level of u, denoted by L(u), is the smallest

distance in Pn from u to a center of Pn. For instance, if n = 2k + 1, then

L(v1) = k and L(vk+1) = 0. Denote the levels of a sequence of vertices A by

L(A). If n = 2k + 1, then

L(v1, v2, · · · , v2k+1) = (k, k − 1, · · · , 3, 2, 1, 0, 1, 2, 3, · · · , k − 1, k)

If n = 2k, then

L(v1, v2, · · · , v2k) = (k − 1, k − 2, · · · , 2, 1, 0, 0, 1, 2, · · · , k − 2, k − 1).

Define the left- and right-vertices by: If n = 2k + 1, then the left- and

right-vertices, respectively, are

{v1, v2, · · · , vk, vk+1} and {vk+1, vk+2, vk+3, · · · , v2k+1}.

(Note here the center vk+1 is both a left- and right-vertex). If n = 2k, then

the left- and right-vertices, respectively, are

{v1, v2, · · · , vk} and {vk+1, vk+2, vk+3, · · · , v2k}.

If two vertices are both right (or left)-vertices, then we say they are on the

same side; otherwise, they are on the opposite sides. Observe

Lemma 3 If n = 2k + 1, then for any u, v ∈ V (P 2
n), we have:

d(u, v) =

{

dL(u)+L(v)
2

e, if u and v are on the opposite sides;

d |L(u)−L(v)|
2

e, otherwise.

If n = 2k, then for any u, v ∈ V (P 2
n), we have:

d(u, v) =

{

dL(u)+L(v)+1
2

e, if u and v are on the opposite sides;

d |L(u)−L(v)|
2

e, otherwise.
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Lemma 4 Let P 2
n be a square path on n vertices and let k = bn

2
c. Then

rn(P 2
n) ≥

{

k2 + 2, if n ≡ 1 (mod 4) and n ≥ 9;
k2 + 1, otherwise.

Proof. Let f be a radio-labeling for P 2
n . Re-arrange V (P 2

n) = {x1, x2, · · · , xn}

with 0 = f(x1) < f(x2) < f(x3) < . . . < f(xn). We first claim that

rn(P 2
n) ≥ k2 + 1, by showing f(xn) ≥ k2 + 1.

By definition, f(xi+1) − f(xi) ≥ k + 1 − d(xi+1, xi) for 1 ≤ i ≤ n − 1.

Summing up these n − 1 in-equalities, we have

f(xn) ≥ (n − 1)(k + 1) −
n−1
∑

i=1

d(xi, xi+1).

Thus, to minimize f(xn) it bounds to maximize the sum
n−1
∑

i=1
d(xi, xi+1).

Assume n = 2k. By Lemma 3, we have

n−1
∑

i=1

d(xi, xi+1) ≤
n−1
∑

i=1

d
L(xi+1) + L(xi) + 1

2
e.

Observe from the above we have: 1) The equality holds only when xi and

xi+1, for any i, are on the opposite sides unless one of them is a center, and 2)

in the last summation term, each vertex of P 2
n occurs exactly twice, except x1

and xn, for which each occurs only once. Note, d(L(xi+1) + L(xi) + 1)/2e ≤

(L(xi+1)+L(xi)+2)/2, and the equality holds only if L(xi+1) and L(xi) have

the same parity. Combining this with 1), there exist at most n − 2 of the

i’s such that d(xi, xi+1) = (L(xi+1) + L(xi) + 2)/2. Moreover, among all the

vertices only the two centers are of level 0, we conclude that

n−1
∑

i=1

d(xi, xi+1) ≤ 4
k−1
∑

i=1

i

2
+

n − 1

2
−

0

2
+

n − 2

2
= k2 + k −

3

2
.

Hence,

rn(P 2
n) ≥ (2k − 1)(k + 1) − k2 − k + 2 = k2 + 1.
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Assume n = 2k + 1. By Lemma 3, we have

n−1
∑

i=1

d(xi, xi+1) ≤
n−1
∑

i=1

d
L(xi+1) + L(xi)

2
e.

Similar to the above discussion, and since there is only one vertex with level

0, we conclude that

n−1
∑

i=1

d(xi, xi+1) ≤ 4
k
∑

i=1

i

2
−

1 + 0

2
+

n − 2

2
= k2 + 2k − 1.

Hence, rn(P 2
n ) ≥ 2k(k + 1) − (k2 + 2k − 1) = k2 + 1.

Assume n ≡ 1 (mod 4) and n ≥ 9, that is, n is odd, k is even, and

k ≥ 4. Assume to the contrary that f(xn) = k2 + 1. Then by the above

discussion, all the following must hold:

1) {x1, xn} = {vk+1, vk} or {x1, xn} = {vk+1, vk+2}.

2) f(xi+1) = f(xi) + k + 1 − d(xi+1, xi) for all i.

3) For any i ≥ 1, the two vertices xi and xi+1 belong to opposite sides

unless one of them is the center.

4) There exists some 1 ≤ t ≤ n − 1 such that L(xt) ≡ L(xt+1) (mod 2),

while L(xi) 6≡ L(xi+1) (mod 2) for all other i 6= t.

By 1) and by symmetry, we may assume x1 = vk+1. Since k is even, k ≥ 4,

and vk+1 is the only center of P 2
2k+1, by 1) - 4), we obtain:

5) L(x1), L(x3), L(x5), · · ·, L(xk+1), L(xk+2), L(xk+4), · · ·, L(x2k) are all

even, while the levels of other vertices are all odd.

Claim. {v1, v2k+1} = {xk+1, xk+2}.

Proof) Suppose v1 /∈ {xk+1, xk+2}. As L(v1) = k, by 5), we have v1 = xa

for some a where xa−1 and xa+1 are vertices on the right side and both

L(xa−1) and L(xa+1) are odd. Let L(xa−1) = y and L(xa+1) = z. By 2),
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f(xa)−f(xa−1) = k+1− (k+y+1)/2 and f(xa+1)−f(xa) = k+1− (k+z +

1)/2. This implies f(xa+1)− f(xa−1) = k + 1− (y + z)/2, contradicting that

f(xa+1)− f(xa−1) ≥ k +1−|y− z|/2 (as z, y are odd so z, y 6= 0). Therefore,

v1 ∈ {xk+1, xk+2}. Similarly, one can show that v2k+1 ∈ {xk+1, xk+2}.

By the Claim, we may assume that v1 = xk+1 and v2k+1 = xk+2 (the

proof for the other case is symmetric). By 5), L(xk+3) = b for some odd

b. By 3) and 2), we have f(v2k+1) − f(v1) = 1 and f(xk+3) − f(v2k+1) =

k + 1 − (b + k + 1)/2. So, f(xk+3) − f(v1) = (k − b + 3)/2. By definition

and Lemma 3, f(xk+3) − f(v1) ≥ k + 1 − (k − b + 1)/2. Hence, we have

b = 1 = L(xk+3). This implies that xk+3 = vk. Similarly, we can get

xk = vk+2. By 1), it must be k = 2, contradicting the assumption k ≥ 4.

Therefore, rn(P 2
2k+1) ≥ k2 + 2.

3 Upper Bound and Optimal Radio-Labelings

By Lemma 4, to establish Theorem 1, it suffices to give radio-labelings achiev-

ing the desired spans. To this end, we will use the following lemma.

Lemma 5 Let P 2
n be a square path on n vertices with k = bn/2c. Let

{x1, x2, · · · , xn} be a permutation of V (P 2
n) such that for any 1 ≤ i ≤ n − 2,

min{dPn
(xi, xi+1), dPn

(xi+1, xi+2)} ≤ k + 1,

and if k is even and the equality in the above holds, then dPn
(xi, xi+1) and

dPn
(xi+1, xi+2) have different parities. Let f be a function, f : V (P 2

n) →

{0, 1, 2, · · ·} with f(x1) = 0, and f(xi+1)− f(xi) = k + 1 − d(xi, xi+1) for all

1 ≤ i ≤ n − 1. Then f is a radio-labeling for P 2
n .

Proof. Recall, diam(P 2
n) = k. Let f be a function satisfying the assumption.

It suffices to prove that f(xj) − f(xi) ≥ k + 1 − d(xi, xj) for any j ≥ i + 2.

For i = 1, 2, · · · , n − 1, set

fi = f(xi+1) − f(xi).
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For any j ≥ i + 2, it follows that

f(xj) − f(xi) = fi + fi+1 + · · · + fj−1.

Suppose j = i + 2. Assume d(xi, xi+1) ≥ d(xi+1, xi+2). (The proof for

d(xi+1, xi+2) ≥ d(xi, xi+1) is similar.) Then, d(xi+1, xi+2) ≤
k+2
2

. Let xi = va,

xi+1 = vb, and xi+2 = vc. It suffices to consider the following cases:

• b < a < c or c < a < b. By the assumption d(xi, xi+1) ≥ d(xi+1, xi+2),

we obtain d(xi, xi+1) = d(xi+1, xi+2) ≤
k+2
2

and d(xi, xi+2) = 1. Hence,

f(xi+2) − f(xi) = fi + fi+1

= k + 1 − d(xi, xi+1) + k + 1 − d(xi+1, xi+2)

≥ 2k + 2 − 2

(

k + 2

2

)

= k + 1 − d(xi, xi+2).

• a < b < c or c < b < a. Then d(xi, xi+2) ≥ d(xi, xi+1)+d(xi+1, xi+2)− 1.

Similar to the above, easy calculation shows that f(xi+2) − f(xi) ≥

k + 1 − d(xi, xi+2).

• a < c < b or b < c < a. Assume k is odd or min{dPn
(xi, xi+1), dPn

(xi+1, xi+2)} ≤

k, then we have d(xi+1, xi+2) ≤ (k+1)/2 and d(xi, xi+2) ≥ d(xi, xi+1)−

d(xi+1, xi+2). Hence, f(xi+2) − f(xi) ≥ k + 1 − d(xi, xi+2).

If k is even and min{dPn
(xi, xi+1), dPn

(xi+1, xi+2)} = k+1, then by our

assumption, it must be that dPn
(xi+1, xi+2) = k +1 and dPn

(xi, xi+1) is

even. Hence, we have d(xi, xi+2) = d(xi, xi+1)− d(xi+1, xi+2) + 1. This

implies

f(xi+2) − f(xi) ≥ 2k + 2 − 2d(xi+1, xi+2) − d(xi, xi+2) + 1

= 2k + 2 − 2
(

k+2
2

)

− d(xi, xi+2) + 1

= k + 1 − d(xi, xi+2).
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Let j = i+3. First, we assume that the sum of some pair of the distances

d(xi, xi+1), d(xi+1, xi+2), d(xi+2, xi+3) is at most k + 2. Then

f(xi+3) − f(xi) = 3k + 3 − d(xi, xi+1) − d(xi+1, xi+2) − d(xi+2, xi+3)

≥ k + 1 > k + 1 − d(xi, xi+3).

Next, we assume that the sum of every pair of the distances d(xi, xi+1),

d(xi+1, xi+2) and d(xi+2, xi+3) is greater than k+2. Then, by our hypotheses

it follows that

d(xi, xi+1), d(xi+2, xi+3) >
k + 2

2
and d(xi+1, xi+2) ≤

k + 2

2
. (∗)

Let xi = va, xi+1 = vb, xi+2 = vc, xi+3 = vd. Because diam(P 2
n) = k, by (*)

and our assumption that the sum of any pair of the distances, d(xi, xi+1),

d(xi+1, xi+2), d(xi+2, xi+3), is great than k + 2, it must be that

• a < c < b < d (or d < b < c < a). Then d(xi, xi+3) ≥ d(xi, xi+1) +

d(xi+2, xi+3) − d(xi+1, xi+2) − 1. By (*), we have

f(xi+3) − f(xi) = 3k + 3 − d(xi, xi+1) − d(xi+1, xi+2) − d(xi+2, xi+3)

≥ 3k + 2 − 2d(xi+1, xi+2) − d(xi, xi+3)

≥ k + 1 − d(xi, xi+3).

Let j ≥ i + 4. Since min{d(xi, xi+1), d(xi+1, xi+2)} ≤ k+2
2

, and fi ≥

k+1−d(xi, xi+1) for any i, we have max{fi, fi+1} ≥ k
2

for any 1 ≤ i ≤ n−2.

Hence, f(xj) − f(xi) ≥ fi + fi+1 + fi+2 + fi+3 > k + 1 > k + 1 − d(xi, xj).

To show the existence of a radio-labeling achieving the desired bound,

we consider cases separately. For each radio-labeling f given in the follow-

ing, we shall first define a permutation (line-up) of the vertices V (P 2
n) =

{x1, x2, · · · , xn}, then define f by f(x1) = 0 and for i = 1, 2 · · · , n − 1:

f(xi+1) = f(xi) + k + 1 − d(xi, xi+1).
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Case 1: rn(P 2
2k+1) ≤ k2 + 1, if k is odd. We give a radio-labeling with

span k2 +1. The line-up (permutation) of V (P 2
2k+1) = {x1, x2, x3, · · · , x2k+1}

is given by the arrows in Table 1. That is, x1 = vk, x2 = v2k, · · ·, x2k+1 =

vk+1. The value above each arrow shows the distance between the two con-

secutive vertices in Pn.

vk
k

−→ v2k
k+2
−→ vk−2

k
−→ v2k−2

k+2
−→ · · ·

k
−→ vk+3

k+2
−→ v1

k+1
−→ vk+2

k
−→ v2

k+2
−→ vk+4

k
−→ v4

k+2
−→ vk+6

k
−→ · · ·

k+2
−→ v2k+1

k
−→ vk+1.

Table 1: Vertex ordering of a labeling for P 2
2k+1 for odd k.

By Lemma 5, f is a radio-labeling for P 2
n . As k is odd, observe from

Table 1, there are two possible distances in P 2
2k+1 between consecutive ver-

tices, namely, k+1
2

and k+3
2

, with the number of occurences k + 1 and k − 1,

respectively. It follows by direct calculation that f(x2k+1) = 2k(k + 1) −
∑2k

i=1 d(xi, xi+1) = k2 + 1. As an example, the following is an optimal radio-

labeling (with minimum span) for P 2
15:

21 29 14 36 7 43 0 50 25 18 32 11 39 4 46.

Case 2: rn(P 2
2k) ≤ k2 + 1, if k is odd. Let G = P 2

2k+1 for some odd k.

Let H be the subgraph of G induced by the vertices {v1, v2, · · · , v2k}. Then

H ∼= P 2
2k, diam(H) = diam(G) = k, and dG(u, v) = dH(u, v) for every

u, v ∈ V (H). Let f be a radio-labeling for G. Then f restricted to H is a

radio-labeling for H. By Case 1, rn(P 2
2k) ≤ rn(P 2

2k+1) ≤ k2 + 1.

Case 3: rn(P 2
2k) ≤ k2 + 1, if k is even. Similar to Case 1, we line-up the

vertices according to Table 2.

By Lemma 5, f is a radio-labeling for P 2
n . Indeed, observe from Table

2, as k is even, there are three possible distances between any consecutive
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vk
k−1
−→ v2k−1

k+1
−→ vk−2

k+2
−→ v2k

k+1
−→ vk−1

k−1
−→ v2k−2

k+1
−→ vk−3 · · ·

k+1
−→ v1

2k−4
−→ v2k−3

k+1
−→ vk−4

k−1
−→ v2k−5

k+1
−→ vk−6

k−1
−→ · · ·

k+1
−→ v2

k−1
−→ vk+1.

Table 2: Vertex ordering of a labeling for P 2
2k, for some even k.

vertices in P 2
2k, namely, k

2
, k+2

2
and k − 2, with the number of occurences

k− 2, k and 1, respectively. By some calculation, the span of f is k2 + 1. As

an example, the following is an optimal radio-labeling for P 2
16:

44 60 35 51 26 9 17 0 65 40 56 31 47 22 5 13.

We now consider the case n = 2k + 1 for even k. If k = 2, the labeling

(3, 5, 0, 2, 4) is a radio-labeling for P 2
5 . Hence, we assume k ≥ 4.

Case 4: If k is even and k ≥ 4, then rn(P 2
2k+1) ≤ k2 + 2. Similarly, we

arrange the vertices according to Table 3.

vk
k+1
−→ v2k+1

2k
−→ v1

k+1
−→ vk+2

k−1
−→ v3

k+1
−→ vk+4 · · ·

k−1
−→ vk−1

k+1
−→ v2k

2k−2
−→ v2

k+1
−→ vk+3

k−1
−→ v4

k+1
−→ vk+5

k−1
−→ v6

k+1
−→ · · ·

k−1
−→ vk−2

k+1
−→ v2k−1

k−2
−→ vk+1

Table 3: Vertex ordering of a labeling for P 2
2k+1, for even k.

By Lemma 5, f is a radio-labeling for P 2
2k+1. Observe from Table 3, there

are five possible distances between any consecutive vertices xi and xi+1 in

P 2
n , namely, k, k − 1, k−2

2
, k+2

2
and k

2
, with the number of occurences 1, 1, 1,
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k and k − 3, respectively. By some calculation, one can show that the span

of f is k2 + 2. As an example, the following is an optimal radio-labeling for

P 2
17:

5 38 14 47 23 56 32 0 66 9 42 18 51 27 60 36 4.

This completes the proof of Theorem 1.
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