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Do any five of the problems that follow. Each problem is worth 20 points. The set of positive
integers is denoted by IV, the set of real numbers is denoted by R and the Euclidean plane is
denoted by RZ?. All spaces are assumed to be Hausdorff.

1. A space is called sequentially compact if each sequence in the space has a convergent sub-
sequence. Prove that X x Y is sequentially compact if and only if the spaces X and Y are
sequentially compact.

2. Let X and Y be spaces, and let f : X — Y be continuous and onto. Prove or disprove each
of the following statements.
(a) If X is compact, then Y is compact.
(b) If Y is compact, then X is compact.

3. Prove that the following statements are equivalent for a space X:
(a) X is not connected;

(b) There exists a continuous onto function f : X — {0,1} equipped with the discrete
topology;
(¢) There exists a non empty, proper subset A of X such that bd(A) = (.

4. Let a = (a1,as) and b = (b1, by) represent arbitrary points in R%. Define metrics d and p on
R? by
d(a,b) = |a; — b1| + |az — bs]
pa,b) = \/(ar — b1)? + (ag — b2)?
Prove these metrics are equivalent (you need not show they are metrics).
5. Let f: R — R, and define f,, : R — R for by f,(z) = f(x + 1/n).

(a) Show that if f is continuous, then (f,) converges pointwise to f.

(b) Show by an example that if f is continuous, then the convergence need not be uniform.

6. A subset of a topological space is called nowhere dense if its closure has empty interior. A
subset of a topological space is called totally disconnected if all of the connected components
of its closure are points. Prove or disprove each statement.

(a) Each nowhere dense subset A of R? is totally disconnected;
(b) Each totally disconnected subset A of R? is nowhere dense.

7. Prove that each regular compact space X is normal.

8. Consider the usual topology on R. FKither exhibit a homeomorphism between the following
subspaces or prove that one does not exist.
(a) A=10,1] and B = [3,5].
(b) C =10,1) and D = [0, 00).

If you exhibit a homeomorphism, you need not justify that it is one.



