(Akis*, Beer, Krebs)

DO 5 OUT OF 7 (Indicate clearly which 5 problems you submit for evaluation)

1. Let *I* be an infinite set. For each $\alpha \in I$, let $X_{\alpha} = \{0,1\}$ in the discrete topology. For every *S* subset of *I*, define

$$f_S = \langle x_\alpha \rangle \in \prod_{\alpha \in I} X_\alpha$$
, where $x_\alpha = 1$ if $\alpha \in S$, and $x_\alpha = 0$ if $\alpha \notin S$.

Let $A = \{f_s : S \text{ is finite}\}$. Show that $f_I \in \overline{A}$, where \overline{A} is the closure of A in the product space $\prod_{\alpha \in I} X_{\alpha}$.

- 2. Let $\mathcal{T}_1, \mathcal{T}_2$ be topologies on a set X. Prove that $\{U \cap V : U \in \mathcal{T}_1, V \in \mathcal{T}_2\}$ is a basis for the coarsest topology on X containing $\mathcal{T}_1 \cup \mathcal{T}_2$.
- 3. Let *X* be a topological space. Let *A*, *B*, and *C* be connected subsets of *X* such that $A \cap B = A \cap C = \emptyset$.
 - (a) Recall that we say a set is "clopen" if it is both open and closed. Prove that if U is a proper nonempty clopen subset of $A \cup B$, then U = A or U = B.
 - (b) Suppose that $A \cup B$ is disconnected. Prove that if $A \cup B$ is homeomorphic to $A \cup C$, then B is homeomorphic to C. Hint: This is the second part of a two-part question.
- 4. (a) Prove that each metric space (X,d) is first countable.
 - (b) Give an example of a topological space (X,\mathcal{T}) that is not first countable. Prove that your answer is correct.
- 5. (a) Let A, B be subsets of a topological space (X, \mathcal{T}) . Prove $\overline{A \cup B} = \overline{A} \cup \overline{B}$, i.e. the closure of the union of A and B equals the union of their closures.
 - (b) Suppose *A* and *B* have compact closures. Prove that $\overline{A \cup B}$ is also compact.

- 6. (a) Prove the continuous image of a compact topological space is compact.
 - (b) Suppose (X,\mathcal{T}) is a compact and connected topological space. Show that the image of every non-constant, continuous, real valued function $f:X\to R$, is a closed interval.
- 7. We call p a *cluster point* of a sequence $\langle x_n \rangle$ in a metric space (X,d), if for all $\varepsilon > 0$ and for every natural number k, there exists n > k with $d(x_n, p) < \varepsilon$.
 - (a) Prove that the set of cluster points of a sequence $\langle x_n \rangle$ in a metric space (X,d), is closed.
 - (b) Give an example of a sequence of real numbers whose cluster point set is the closed interval [0,1].