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Towards a Nominalization of Quantum Mechanics

MARK BALAGUER

In this paper 1 will provide the beginnings of a nominalization of quantum
mechanics, or QM. 1 will not completely nominalize QM, but 1 will pro-
vide what 1 think is the most important part of such a nominalization,
namely, a nominalistic recovery of the algebraic structure of Hilbert
spaces.

To nominalize QM is to reformulate it so that it no longer contains any
reference to, or quantification over, abstract objects, i.e., objects which are
aspatial, atemporal, acausal, mind-independent, etc. The reason for want-
ing to do this is to show that we can be realists about QM without believ-
ing in abstract objects.

To argue that our physical theories can be nominalized is not to argue
that nominalism—i.e., the view that there are no abstract objects—is true.
It is merely to rebut a certain argument against nominalism, viz., the
Quine-Putnam indispensability argument. 1 do not think there are any
good arguments for nominalism, and I have elsewhere (1995) responded
to what is widely regarded as the best such argument, viz., Benacerraf’s
(1973) epistemological argument against the existence of abstract objects.
And 1 should also note here that even if it turns out that empirical science
cannot be nominalized, it will not necessarily mean that nominalism is
false, because it may be that nominalists can admit that empirical science
contains indispensable abstract-object talk, and simply account for this
fact; indeed, in another paper (forthcoming) | have tried to do just that,

1. How Field nominalizes

The program of nominalization was initiated by Hartry Field (1980), who
tried to nominalize Newtonian Gravitation Theory, a classical flat-space-
time theory. David Malament has argued (1982) that Field’s method can-
not be extended to cover QM. [ think Malament is wrong, and below, [ will
explain why. The first thing to do, however, is explain Field's method. |
will concentrate on Field’s nominalization of physical quantities, such as
temperature and length (Field 1980, Ch. 7). For the sake of simplicity, my
presentation will differ somewhat from Field’s. For example, I concen-
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trate on length instead of temperature, and | take physical objects rather
than spacetime points as the basic entities of my nominalistic structures:
but the basic strategy is identical to Field’s. I also note (as Field himself
did) that my account depends heavily upon work carried out by Krantz,
Luce, Suppes, and Tversky (1971) on the foundations of measurement.

For those who have worries about the nominalistic acceptability of
spacetime points, my approach might seem superior to Field’s. But, ulti-
mately, we might have to use spacetime points anyway. That is, because |
use physical objects rather than spacetime points, there are certain aspects
of my construction—e.g., the fact that I appeal to concatenations of phys-
ical objects which, it would seem, haven't actually been performed—that
might generate worries about nominalistic acceptability. In this section, |
will gloss over such worries, because the reason I use physical objects
rather than spacetime points is not that [ think spacetime points are nom-
inalistically unacceptable; it's merely that [ think Field's strategy of nom-
inalization can be more easily understood in terms of physical objects.
Now | will consider several worries about nominalistic acceptability that
arise from other sources, but I will not consider all the worries that one
might reasonably have here; there is no need to consider all such worries,
because the central aim of this section is not to provide a complete justi-
fication of Field's method of nominalization, but simply to familiarize the
reader with his general strategy, so that, in later sections, | can address
Malament’s worry about QM.

I now turn to the task at hand. Ordinarily, when we state the lengths of
physical objects, we do so in platonistic terms. We say, for instance, that
Ralph’s boat is fifty feet long. Thus, we seem to be committed here to the
number 50 and also, perhaps, to a numerical functor. That is, length-in-
feet can be thought of as a function / from physical objects to real num-
bers: to say that a boat b is fifty feet long is to say that f{d) = 50. And we
also guantify over numbers in such settings: we say things like “Boat b is
more than 50 feet long™, which can be symbolized as (3x)(x > 50 ~ fib) =
x).

The basic idea behind Field's strategy for nominalizing such length
assertions is to show how to state the length of a physical object by spec-
ifying relations it bears not to numbers but to other physical objects. Thus,
we would say not that Ralph’s boat stands in the foot relation to the num-
ber 50, but that it stands in the longer-than relation to Wanda’s boat and
the shorter-than relation to Warren's boat. Now, of course, this is not
enough; if all we could do was compare two physical objects and say
which was longer, we would not be able to reproduce what the numbers
do for us; this would only give us an ordering of physical objects; to get
the equivalent of exact length readings, we need to be able to say how
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much longer Ralph's boat is than Wanda's boat. To do this, we are going
to have to construct an empirical structure which can be embedded in the
mathematical structure that we’re using here—i.e., the real number line—
and then replace the latter with the former. I will now go through this
slowly.

The first thing we need to do is define a concatenation operation - on
physical objects, which works in the obvious additive way; thus, if b and
c are foot-long rulers, then b = ¢ is two feet long. This gives us a nominal-
istic way of saying that Ralph’s boat is fifty feet long: if a,, ... , a,, are
foot-long rulers, and b is Ralph’s boat, then we can say that (a, s @, 0 ... =
ay) ~ b, where “~" means “is the same length as”. We can make things
easier by choosing some physical object u—e.g., the king’s foot, or a stick
in Paris—as the unit object. Thus, to say that Ralph’s boat is fifty units
long, we need merely say that it is the same length as u concatenated with
itself forty-nine times; symbolically, this can be expressed as “b ~ 50u",
where “50u" is just shorthand for “u o 1 o... o 4", where the concatenation
operation is performed here forty-nine times. Finally, we can get more
fine-grained length readings for physical objects by merely switching to a
shorter unit object. For instance, to say that b is 50.5 us long, we need
merely define one of the halves of i as ' (i.e., u ~ 2u’) and say that b ~
1014, Or if we want to say that b is 50.346 feet long, we just find a unit
object ¢ which is .001 feet long, and claim that b is the same length as ¢ o
¢ a... o ¢ (where the concatenation operation is performed 50,345 times)
i.e., that b ~ 50,346¢. Now, obviously, there are pragmatic constraints on
how small we can make the unit object; but this is irrelevant, because we
are only trying to give a nominalistic treatment of the mathematics that we
actually apply, and it’s clear that our apparatus is going to give us a nom-
inalistic way of expressing any length assertion that we could ever make,
for any such claim will always be in terms of some unit that we actually
use.

I've just claimed that our nominalistic apparatus is sufficient for our
purposes. But this result can also be proven (in a metalanguage that allows
platonistic terminology). The general strategy is as follows. First, we take
the empirical structure consisting of (i) the set D of all physical objects
and all finite concatenations of such objects, and (ii) the concatenation
operation - and the longer-than relation =, both of which are defined on
D, and we call it E. That is, E=<D, =, o>. To show that our nominalistic
apparatus is acceptable, we have to construct a homomorphism' @ which
takes E into R—where R = <Re, >, +>, Re is the set of real numbers, > is

' The reason @ is a homomorphism rather than an isomorphism is that there
can be many physical objects of the same length and, hence, many physical ob-
Jects associated with the same real number.,
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the usual greater-than relation, and + is the usual addition operation—in
such a way that > preserves the important properties of =, and + preserves
the important properties of o. The main property of = that needs to be pre-
served is this: for all b, ¢ such that b > ¢, there is some (sufficiently short)
object « such that & > nu » ¢ (where “nu” is shorthand for "w ot ... =
u”, where the concatenation operation is performed here n minus 1
times).? For our @ to preserve this, it must be that in any such situation,
@(h) = nd(u) > DO(c). As far as o is concerned, what we need to demand
is that ©(h o ¢) = (b)) + D). To construct a homomorphism @ which
satisfies these constraints is to prove a representation theorem; the name
is supposed to suggest that, once the proofis carried out, facts about R can
be used to represent facts about E, i.e., that purely physical length facts
about the physical objects in D can be stated in terms of real numbers.

There are many different homomorphisms which would serve our
needs here, i.e., which would satisfy the constraints mentioned in the last
paragraph. A unigueness theorem tells us what all of these homomor-
phisms have in common; more precisely, it tells us which sorts of trans-
formations of our homomorphism @ are acceptable. It turns out that, in
the case of length, all and only similarity transformations are permissible;
in other words, if @ is a homomorphism from E into R which satisfies the
constraints discussed above, then if @' is also such a homomaorphism, then
there is some positive real number ¢ such that @' = ¢®. (With different
physical quantities, different sorts of transformations are permissible;
with temperature, for instance, affine transformations are permissible; that
is, for any two acceptable homomorphisms @ and 4¥, there is a real num-
ber b and a positive real number ¢ such that @' = ¢® + b. All of this is just
a technical way of stating the obvious facts that (a) any two acceptable
length scales, e.g., the foot and inch scales, differ only in the length of the
unit, and (b) any two acceptable temperature scales, e.g., Celsius and
Fahrenheit, differ only in the size of the degree and the zero point.)

In a nutshell, then, to prove that my nominalization of length is accept-
able, 1 would have to state intuitively plausible axioms about E which
would enable me to prove a representation theorem between E and R and
a corresponding uniqueness theorem. I will not discuss how exactly this
is to be done. It is discussed by Field (1980) and, in much more detail, by
Krantz, Luce, Suppes, and Tversky (1971).

Once these theorems are proven, we can use real numbers to state facts
about length without believing in the numbers. For we can treat “b is 50
feet long” as shorthand for “b is the same length as a foot-long ruler con-

? Ope might worry that this presupposes that matter can be carved up indefi-
nitely. But we can ease this worry merely by shifting from talk of physical objects
to talk of parts of physical objects (or, of course, to talk of points and regions of
spacetime).
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catenated with itself forty-nine times”. In short, the point is that if we
wanted to, we could say everything we need to say about the lengths of
physical objects in nominalistic terms, i.e., by referring only to physical
objects and using only nominalistic vocabulary, e.g., *»>", “o”, and *~".
{Of course, it's easier to speak in platonistic terms, but from an ontologi-

cal point of view, that is irrelevant.)

One might object that the function 4, the set D which forms the domain
of our nominalistic structure E, and indeed, E itself~—which is just an
ordered triple—are abstract objects. But this is irrelevant, because nomi-
nalists need not believe that any of these things really exist, because they
need not believe that their representation theorems, or the proofs of these
theorems, are true. All they need to believe is their nominalistic recon-
struction of science; but @, D, and E do not appear in this reconstruction;
they only appear in the proof of the representation theorem for length. In
other words, our various representation theorems are not part of our nom-
inalistic reconstruction of science; they are only part of the argument for
the claim that that reconstruction is adequate. In other words, representa-
tion theorems are designed to convince platonists of the adequacy of a
given nominalization; they are not part of that nominalization.

MNominalists might try to salvage a nominalistic structure that they can
believe in by using Goodmanian sums. They could define Eg as the Good-
manian-sum ordered triple [Dy;, =, o], where Dy is the Goodmanian sum
of all physical objects and all finite concatenations of such objects, and >
and o are defined on the parts of Dy. But there doesn’t seem to be any rea-
son to go to this trouble, or to bring up the controversial issue of Goodma-
nian sums, because we are still going to have to take the attitude of the last
paragraph with respect to the homomorphism . Thus, we might as well
take the same attitude with respect to E and D, because nominalists have
no need for a nominalistic structure that they can believe in. They can
maintain that they only believe in the objects in D, and that talk of the sets
D and E serves merely to aid the proof of the claim that it’s acceptable to
believe only in those objects.

I have only spoken here of the nominalization of physical quantities,
such as length. Field did much more than this: he provided nominalistic
statements of many laws involving such quantities. | will not go into this
here, because | have already given enough background to motivate Mala-
ment’s objection to Field's program, i.e., to see why Malament thinks that
Field's method cannot be extended to cover QM.

* There's no way to avoid this, The representation theorems we're concerned
with establish that a certain relationship holds between a platonistic structure and
a nominalistic structure, Thus, to prove these theorems, we are going to have 1o
talk about the abstract objects contained in the platonistic structures, and so there
is no sense trying to avoid the claim that & is an abstract object.
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2. Malament s objection

Malament’s argument for the claim that Field's program cannot be
extended to QM is short enough to quote in its entirety:

I do not see how Field can get started [nominalizing QM] at all, |
suppose one can think of the theory as determining a set of mod-
els—each a Hilbert space. But what form wo ulﬁ the recovery
(1.e., representation) theorem take? The only possibility that
comes to mind is a theorem of the sort sought by Jauch, Piron, et
al. They start with “propositions” (or “eventualities™) and lattice-
theoretic relations as primitive, and then seek to prove that the lat-
tice of propositions is necessarily isomorphic to the lattice of sub-
spaces of some Hilbert space. But of course no theorem of the sort
would be of any use to Field. What could be worse than proposi-
tions (or eventualities)? (1982, p. 534)

This objection might seem a bit obscure to those who don’t know much

about QM, but in this section I will explain exactly what Malament is wor-

ried about,

The most important mathematical structures used in QM are Hilbert
spaces, and the main use of Hilbert spaces is for representation. For exam-
ple, we represent the possible pure states of quantum systems with vectors
in Hilbert spaces, and we represent observable quantities of quantum sys-
tems (e.g., position and spin) with Hermitian operators defined on the vec-
tors of Hilbert spaces. But most important is the representation of
quantum events (or propositions) with closed subspaces of Hilbert spaces:
iff we let “A" denote some observable, “A™ denote some Borel set of real
numbers that can be values of 4, and “(4,A)” denote the quantum event of
a measurement of 4 yielding a value in A (or equivalently, the proposition
which asserts that this event has occurred, or perhaps, will occur) then we
can represent (4,A) with the closed subspace CS(A4,A) of the Hilbert space
H in which A is represented, where CS(A4,A) is defined as follows: a vector
v of H is in CS(A4,A) iff there is a probability of 1 that a measurement of
A, for a quantum system in the state represented by v, will yield a value in
A,

Note the use of probabilities here. In classical mechanics, we can think
of a state as a function from propositions of the above sort to truth values,
QM, however, is a probabilistic theory: it does not (in general) predict
with certainty how a quantum system in some given state will behave
when we measure it. Thus, instead of thinking of quantum states as func-
tions from propositions to truth values, we think of them as functions from
propositions to probabilities, i.e., to [0, 1]. Thus, a given quantum state
will assign to each proposition, or event, (4,A) a real number » in [0,1]; r
is the probability that the event (4,A) will occur if a state-y system is mea-
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sured for A (or that the corresponding proposition will be true). Thus, each
quantum state determines a probability function from quantum proposi-
tions (or events) to [0,1]. (The rule for calculating the exact probability »
that a particular quantum state w assigns to a particular proposition, or
event, (4,A) is this: r is equal to the inner product of the vector v that rep-
resents w and the vector v that results from projecting v onto CS(4,A).)

Applying all of this to a concrete example, if we let “z+" denote the
spin-up-in-the-z-direction state, “Sx” denote the spin-in-the-x-direction
observable, and “+” denote the spin-up value, then (assuming that z is
orthogonal to x) =+ determines a function p_, such that p(Sx, +) = 0.5,
Thus, according to the above manner of correlating quantum events and
closed subspaces of Hilbert spaces, we will associate the event (Sx, +)
with the closed subspace CS(Sx, +) which contains a given vector v iff v
represents a state y which determines a probability function p, such that
pSx, +) = 1.

The last few paragraphs tell us that the following two sets are in one-
one correspondence:

S(H), the set of closed subspaces of a Hilbert space £,
and
S(E), a certain set of quantum events (or propositions).

But more needs to be said about S(E), i.e., about precisely which events
are contained therein, S(E) is not the set of all quantum events of the form
(A,A); rather, it is the set of events (A,A) associated with a given set of
mutually incompatible observables. In the present context, it doesn't
really matter what this comes to, because nothing important is going to
hang on it. But loosely speaking, two observables are incomparible if and
only if QM never assigns them determinate values for the same quantum
system at the same time. An example of a pair of incompatible observ-
ables is position and momentum. But there are also larger sets of mutually
incompatible observables, e.g., the set SPN of all of the infinitely many
spin-1/2 observables. Now, of course, if we take one of these spin-observ-
ables out of SPN, the resulting set will still be a set of mutually incompat-
ible observables; but let us ignore such sets and restrict our attention to
classes of mutually incompatible quantum observables which are rmaxi-
mal in the sense that there are no observables which are not in the set but
which are incompatible with all the observables in the set. It turns out that
the set S(E) of quantum events associated with a given class of this sort—
i.e., a (maximal) class of mutually incompatible quantum observables,
e.g., the set SPN, or the set containing position and momentum—is in
one-one correspondence with the set S(H) of closed subspaces of the
Hilbert space H in which the given class of observables is represented.
Indeed, a much stronger relation holds here: we can define lattice-theo-
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retic predicates on S(H) and S(E) and thereby construct (non-distributive)
orthomodular lattices out of these two sets which are isomorphic to one
another. We can call these orthomodular lattices L(H) and L(E), respec-
tively.

It would take quite a bit of space to give a precise definition of “ortho-
modular lattice”, but in the present context, there is no need to be very pre-
cise. All I will say is that an orthomodular lattice is a special sort of
partially ordered set, where a partially ordered set is an ordered pair <A,
<>, where A is a non-empty set and < is a reflexive, transitive, antisym-
metric relation defined on A. (In our lattices, “<” will mean “is included
in”; thus, if @ and b are closed subspaces in S(H), then to say that a <, b
is to say that all the vectors in a are also in b; and if @ and b are events in
S(E), then to say that a <; b is to say that whenever a occurs, b also
occurs.) An orthomodular lattice is a partially ordered set that satisfies cer-
tain further conditions, e.g., that of having a maximum element and a min-
imum element, i.e., an <-most element and an =-least element.

How can we nominalize the parts of QM that use Hilbert spaces in the
ways | have been describing? In § 1, we saw that the strategy for nominal-
izing is to produce a nominalistic structure which can be embedded in the
platonistic mathematical structure being used. Thus, in the present case,
what we want to do is produce a nominalistic structure which is embed-
able in L(H); doing this will show that we can take L{H) as a mere repre-
sentational device, i.e., as a means of representing various features of our
nominalistic structure. In this light, it is easy to appreciate Malament's
worry. For as things have been set up, it seems that the closed subspaces
that are the elements of L(H) are being used to represent things which are
not nominalistically kosher, viz., quantum events (or propositions). In
other words, the obvious representation theorem which suggests itself is
one which obtains between L(H) and L(E); but the problem 1s that L(E) is
not a nominalistic structure, because the members of S(E)—whether we
take them to be propositions or events—are abstract objects. (One might
wonder why we cannot take events as nominalistically kosher, since they
occur in spacetime. The reason is that there aren’t enough events which
have already occurred: in order to get the full structure of an orthomodular
lattice, we are going to have to make use of all the events in S(E); but
many of these events have never occurred, and so we are going to have to
take the events in S(E) as abstract objects.) Thus, to replace L(H) with
L(E) is just to replace one platonistic structure with another. This is Mala-
ment's worry.

4 For a precise definition of “orthomodular lattice™, see Hughes (1989, § 7.3).
It is worth noting that the set of events associated with a single observable can be
structured into a Boolean algebra; it is only when we “paste” two or more of these
together that we get the weird non-distributive structures of QM.
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What I need to do, then, is find a way of taking the closed subspaces of
Hilbert spaces as representing physical phenomena of some sort or other;
if' | can do this, | should be able to construct nominalistic structures out of
these physically real things and then prove representation theorems which
enable me to replace the mathematical structures in question—i.e., the
orthomodular lattices built up out of closed subspaces of Hilbert spaces—
with these new nominalistic structures.

3. The strategy for nominalizing OM

My thesis is that the closed subspaces of our Hilbert spaces can be taken
as representing physically real properties of quantum systems. In partic-
ular, they represent propensity properties, e.g., the r-strengthed propensity
of a state-y system to yield a value in A for a measurement of 4 (or, to
give a more concrete example, the 0.5-strengthed propensity of a =+ elec-
tron to be measured spin-up in the x-direction).

Does this mean that | am committed to a propensity interpretation of
OQM? MNo. First of all, the most I'm committed to here is the very broad
claim—Iet’s call it BC—that quantum probability statements are about
physically real propensities of quantum systems; but BC can be under-
stood in a very weak way, a way which makes it seem very plausible; in
particular, it can be understand as saying simply that quantum systems are
irreducibly probabilistic, or indeterministic; thus, it seems to me that BC
is compatible with all interpretations of QM except for hidden-variables
interpretations, and moreover, that it is currently very widely accepted.
And secondly, I'm not even committed to BC; I'm merely giving a strat-
egy for nominalizing QM which assumes BC; there may be other ways to
nominalize QM which don’t assume BC, and iff QM experts rejected (the
weak reading of) BC, we could try to find one. For now, | merely want to
undercut Malament’s worry by showing how one nominalization of QM
would go.

In any event, | need to establish two different claims in order to justify
my thesis; first, [ need to establish either

(la) Propensities are nominalistically kosher,
or

(1b) References to propensities can themselves be nominalized away;
and second, [ need to establish

(2) Propensities provide a means of nominalizing the parts of QM
discussed in the last section; i.e., the closed subspaces of our
Hilbert spaces can be taken as representing quantum propensities.
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In this section, | will argue for (2) simply by showing how the nominal-
ization goes; in the next section, I will argue (very quickly and sketchily)
that (1b) is true and that, even if it isn't, (1a) is true.

In order to establish (2), [ have to find, for each Hilbert space H that we
use in QM, a set of propensities which corresponds to the set S(H) of
closed subspaces of H, and | need to construct a nominalistic structure out
of this set of propensities and then prove a representation theorem show-
ing that this nominalistic structure is homomorphic to the orthomodular
lattice L{H) built up out of S(H). | am not going to do all of this here;
instead, I will {(a) do some of it and (b) motivate the claim that it can all be
done.

I begin by recalling that each quantum state can be thought of as a fune-
tion from events (A4,A) to probabilities, i.e., to [0,1]. Thus, each quantum
state specifies a set of ordered pairs <(4,A), =, The next thing to notice is
that each such ordered pair determines a propensity property of quantum
systems, namely, an r-strengthed propensity to yield a value in A for a
measurement of 4. We can denote this propensity with “(4,4,r)".

Now, consider the set S(P) of propensities (4,A,r) associated with a par-
ticular quantum state y (and a particular {maximal) class of mutually
incompatible observables). I claim that from the set 5(P) we can construct
a nominalistic orthomodular lattice L(P) which is homomorphic to the
orthomodular lattice L{H) constructed from the set S(H) of closed sub-
spaces of the Hilbert space H in which the given observables are repre-
sented. This claim can be justified by arguing that L{P) is homomorphic
to L(E), i.e., the orthomodular lattice built up out of the set S(E) of quan-
tum events associated with the given class of observables; for as we saw
in § 1, L(E) is isomorphic to L{H). How, then, can | argue that L(P) is
homomorphic to L{E)? To argue this point in the right way, 1 would need
to provide precise characterizations of L(P) and L(E) and then state and
prove a representation theorem. (Actually, 1'd really need to prove infi-
nitely many representation theorems; for every (maximal) class of mutu-
ally incompatible observables will generate a new L(E), and every
quantum state associated with that L(E) will generate a different L(P), and
my claim is that each of these L(P)s will be homomorphic to that L{E), so
I would need to prove a different representation theorem for every L(E)-
L(P) pair in QM.) [ am not going to prove any of these theorems here.
What 1 want to do instead is provide an informal argument for the claim
that a/l of them do hold, i.e., that for each L{E)-L(P) pair in QM, L(P) is
homomorphic to L(E). I will argue this point in two steps, one dealing
with the domains of the two sorts of structures and one dealing with the
predicates (or, to be more precise, the non-logical expressions).
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The first step is to show that for any given L{E)-L(P) pair, there is a
homomorphic correspondence between the domains of L(P) and L(E),
i.e., between S(P) and S(E). This can be seen in the following way. S(E)
is a set of quantum events (A4,A). Now, if we choose a particular quantum
state y, it will determine a probability function p,, which assigns to each
{A.A) in S(E) a unique real number » in [0,1]. Thus, it seems clear that,
when we fix the state of the system, each event (4,A) in S(E) is going to
be associated with a unique propensity (4,A.r) and vice-versa; for (a) we
can use the probability function associated with the state in question to
assign a unique (4,A,r) to each (4,A), and (b) we can assign a unique (A4,4)
to each (A,A,r)—indeed, the very (4,A) to which (4,A,r) was assigned in
{a)—by merely “erasing™ the r.

This last sentence isn’t exactly right, because it suggests that there is a
one-one correspondence between S(P) and S(E)—i.e., between the
(A,A.r)s associated with a given state and the (4,A)s—but there's actually
a many-one correspondence here. The reason is that every state-y quan-
tum system will have an (4,A,r)-type propensity. For instance, every state-
z+ electron will have an (Sx, +, 0.5)-type propensity. The reason this is
important is that in order to maintain that propensities are nominalistically
kosher, | am going to have to treat the (Sx, +, 0.5)s associated with differ-
ent electrons as different things; but there is only one (Sx, +), and so the
correspondence between the (4,A)s on the one hand and the (4,A,r)s asso-
ciated with a given quantum state on the other is going to be many-one
rather than one-one. This is exactly analogous to the case of length, where
the mapping from physical objects to real numbers is a homomorphism. |
will return to this topic in § 4.

The second step of my argument for the claim that L(P) is homomor-
phic to L(E) is to show that there are nominalistic versions of our (platon-
istic) lattice-theoretic predicates and operator expressions. When we
construct L{H), we do so by defining certain non-logical expressions—
most notably, the two-place-relation predicate “is subspace-included in”
and the unary-operation expression “the subspace-orthocomplement
of"—on S(H); and when we construct L(E), we do so by defining analo-
gous expressions—"is event-included in” and “the event-orthocomple-
ment of "—on S(E). Thus, if I can show that we can lift nominalistic
propensity expressions directly off of these platonistic expressions—just
as we did in the case of length, when we lifted “ =" and “=" off of “>"" and
“+"—then (given the result of the last two paragraphs) it would seem
extremely plausible to suppose that we can use these expressions to build
a lattice L(P) out of the set S(P) which is homomorphic to L(E). Let me
begin with the predicate “is included in”.
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Corresponding to the platonistic predicate “is event-included in”, or
“<.", we can introduce the nominalistic predicate “is propensity-included
in”, or “<,”. To say that one propensity is propensity-included in
another—e.g., that (4,A,7) <, (4"A"#" }—is (on the definition I will pro-
pose) a nominalistic claim, because it is to say something about quantum
systems; in particular, it is to state a physical law about quantum systems.
But what law? Well, the first suggestion one might make is that (4,A,0) <
(A" A )it it’s a law of nature that any quantum system that has (4,A.7)
also has (A",A',#'). But there is a technical difficulty with this definition of
“<,", and it turns out to be insufficient for the notion of propensity-inclu-
sion that we want to capture. The problem is generated by the fact that
propensities are indexed to particular states, or in other words, that the ele-
ments of L(P) are (4,A,7)s instead of (4,A)s; because of this, there will be
cases where it is a law of nature that any system that has (4,A,7) also has
(A"A'#"), but where this law holds not because the one propensity is
included in the other, in the sense we're interested in, but simply because
(a) the onfy quantum state that generates the probability » for (4,A) is the
state y associated with the L{F) we're currently working with, and (b)
also happens to generate the probability # for (4" A"). In other words, the
law holds by accident in such cases, because the only L(P) in which
(A.A,r) appears is the L(P) associated with .

What [ propose is simply to ignore the s in defining “<,”. We can do
this by simply lifting the definition of *<,” directly off of the definition of
*a ™, <" can be defined as follows: (4,A) = (4"A") iff for every quantum
state y associated with the given L(E), p,(4,4) = p,(A"A"). Thus, we can
define “<," as follows: (4,Ar) <, (A" A’ #) iff it is a law of nature that
every quantum system has a propensity to have a value in A for a measure-
ment of the observable 4 which is weaker than, or equal in strength with,
its propensity to have a value in A’ for a measurement of the observable
A'. (It is, perhaps, more intuitive to define “<.” by saying that (4,A) <
(A", A") iff whenever (4,A) occurs, (4',A") also occurs, Analogously, we
can define “<." by saying that (4,A,) <, (A" A" ) ifT it is a law of nature
that any quantum systemn that has a value in A for 4 also has a value in A’
forAd')

Let me explain my strategy here a bit more carefully. Every (maximal)
class of mutually incompatible observables in QM generates an ortho-
modular lattice L(E), and corresponding to each such L(E) is a whole col-
lection of L(P) lattices—in particular, there is one for each state y
associated with the given class of observables. Now, each of these L{P)s
consists of a group of (A,A, r)s, and what's more, each (4,A) from the
given L(E) appears in an (4,A,r) exactly once in each L(P). (We know this,
because the (4,A,7)s in a given L(P) are generated from the (4,A)s in L(E)
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by means of a probability function that assigns exactly one real number »
to each (4,A) in L(E).) Thus, the only differences between the various
L(P)s associated with a given L(E) are the rs that are attached to the vari-
ous (4,A)s. But we can now see that the inclusion patterns in the given
L(E) are going to be reproduced in each of the L(P)s; for on the above def-
inition of “<,”, the rs appearing in the various (4,A,7)s don’t play any role
at all in determining what propensities are propensity-included in what
other propensities. (We know that this is acceptable, i.e., that no confusion
will arise from this, because in any given L(P), each (4,A,r) can be
uniguely picked out by A and A alone.) So whether or not some propensity
(4,A,r) is propensity-included in some other propensity (4",A"r') depends
solely upon facts about 4, A, 4, and A", and indeed, it depends upon the
same facts that the question of whether (4,A) =g (AA") depends upon.
Thus, it is clear that each L(P) associated with a given L(E) will have the
same inclusion patterns as the given L(E)}—i.e., that for each such L(P),
we will have (4,A,) < (A4",A"F) iff we have (4,4) < (4".A") in L(E). So
it should also be clear that the above definition of <" succeeds in captur-
ing the notion of inclusion that we’re after, i.e., that it succeeds in captur-
ing the right extension.

Even if all this is granted, one might have misgivings about my defini-
tion of “<,”, for one might doubt that it is really nominalistically kosher.
There are two different worries here.® First, one might wonder whether it
is nominalistically acceptable to speak of a quantum system having a pro-
pensity, or having one propensity that’s stronger than another. 1 will
address this worry in § 4. For now, [ will only concern myself with the sec-
ond worry | have in mind, i.e., the worry that it is not nominalistical ly
acceptable to appeal to values in A, because A is a sef and values in A are
real mumbers. The reader may well have been worrying about the appeal
to values in A all along, i.e., since the first paragraph of this section, when
I first began speaking of r-strengthed propensities for yielding values in A
for measurements of A. And, of course, the reader might also be worried
about the real number #; I will address the worry about » in § 4 below,
when I discuss the nominalistic acceptability of quantum propensities;
right now, [ will only address the worry about A.

It is not difficult to eliminate talk of values in A, because these values
are values of a physical quantity—viz., A—and, therefore, we can dis-
pense with them in the same way that we dispense with real numbers in

5 Actually, there are three worries. The third worry concerns the question of
whether nominalists can legitimately make use of the notion of a law. [ think they
can, but T will not try to justify this claim here, because I am only trying to argue
that QM doesn’t raise any special problems for nominalists, i.e., problems that
they don’t already have. If nominalists can’t account for there being laws of na-
ture, then it would be rather pointless to try to nominalize QM.
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connection with other physical quantities, e.g., temperature and length. In
other words, we can construct a nominalistic structure consisting of a
domain of quantum systems together with A-predicates (e.g., “A-less-
than") defined on this domain, and then formulate a set of axioms which
enables us to prove a representation theorem between this structure and
the ordinary platonistic one. Thus, we have an ordinary Field-style nomi-
nalization of the observable 4 embedded within my nominalization of the
probability claims of QM. So, for example, we will replace sentences like,
“There is a probability of 0.75 that a state-y electron will yield a value in
the closed interval [m,, m,] for a measurement of momentum”, with sen-
tences like, “A state-y electron has a 0.75-strengthed propensity to be
momentum-greater-than-or-equal-to a state-y, electron and momentum-
less-than-or-equal-to a state-y, electron”™, where w, is the state of having
a momentum value of m, and i, is the state of having a momentum value
of m,. And, of course, the same sort of thing can be done to eliminate the
appeal to values in A from the definition of <,

To be sure, there will be differences between the nominalization of
length and the nominalization of various quantum observables. But none
of these differences raises any impediment to nominalization. For
instance, whereas physical objects can take any real number as a value of
length, spin-1/2 particles can only have two different values of spin, viz.,
1/2 and -1/2. Thus, in nominalizing spin-1/2 observables, the relevant pla-
tonistic structure is not going to be the real number line, and our nominal-
istic predicates are not going to be analogous to our nominalistic length
predicates—e.g., we won't be using “spin-less-than”. But this doesn’t cre-
ate any problem, because we can simply use different nominalistic predi-
cates—e.g., for the observable Sx, we will want to use “Sx-up” and *5x-
down™—to build up a different sort of nominalistic structure.

So it seems to me that the above definition of “<." provides us with an
acceptable nominalistic version of “<;". Now, aside from “is included in”,
the only other lattice-theoretic non-logical expression for which we need
to find a nominalistic version is the unary-operation expression “the
orthocomplement of”. (The binary operations “join” and “meet” can be
defined in terms of inclusion; if @ and b are elements of a lattice, then a
join b—i.e., a v b—is the inclusion-least-upper-bound of @ and b; and
their meet is their inclusion-greatest-lower-bound.) | do not want to go
into nearly as much detail in defining **""—i.e., “the propensity-orthoc-
omplement of "—as I did in defining “<,”. 1 simply want to note that (a)
“the event-orthocomplement of”, or “<.”, can be defined by saying that
(A,A) = (4", A" iff for all states y, p(4,4) = | iff p,(4"A") = 0; and so
(b) “+" can be defined by saying that (4,A,r) = (A" A" P ifFit is a law
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of nature that a quantum system has the propensity (4,A,1) iff it also has
the propensity (A",A"0).

This concludes my argument for the claim that the various L(P)s that |
have described are homomorphic to the L(E)s they're associated with.
Now, in order to prove that a given L(P) was homomorphic to its L(E}, 1
would have to formally define a mapping @ that took the given 5(P) into
the given S(E) and then prove that it was a homomorphism; that is, |
would have to prove a representation theorem. | have not done this here,
but it seems to me that I have shown that, in any given case, it could be
done. For (a) I have made it very clear what the various ®s will look
like—in any given case, @ will take S(P) into S(E) by simply “erasing”
the rs from the (4,A,r)s—and (b) | have given arguments which strongly
suggest that these ®s will be homomorphisms. If all of this is correct—
and if [ can argue that either (a) propensities are nominalistically kosher,
or (b) references to propensities can themselves be nominalized away—
then Malament's worry has been refuted.

This does not constitute a complete nominalization of QM; what is left
unnominalized is the dynamics of the theory—in particular, the
Schrisddinger Equation. But | don’t see any reason why this can’t be nom-
inalized in the same general way that Field nominalizes the differential
equations of Newtonian Gravitation Theory. It is not trivial that this can
be done, but I do not foresee any impediments. In any event, Malament’s
worry has nothing to do with the dynamics of QM, and indeed, I do not
know of any arguments against the nominalizability of the dynamics of
(M. Thus, it seems to me that if what I am suggesting in this paper is cor-
rect, then it shows how the most important and problematic part of the
nominalization of QM ought to go.

Any nominalization should come complete with a nominalistic picture
of what is going on, and before 1 end this section, I would like to make
sure that the picture | have in mind here is clear. My idea, in a nutshell, is
this: every quantum system has a bunch of physically real propensities
associated with various observables; moreover, since any quantum sy stem
is (at any given time) in some particular state y, it will always be the case
that the collection S(P) of propensities which it actually, presently has
with respect to a particular (maximal) set of mutually incompatible
observables can be formed into a lattice L(P) that is homomorphic to the
lattice L(H) which can be constructed from the closed subspaces of the
Hilbert space H in which these observables are represented. The important
thing here is the nominalistic benefit of switching from events {or propo-
sitions) to propensities. | pointed out above that if we’re working with
events, then in order to get the appropriate orthomodular lattice for a par-
ticular case (i.e., for a particular set of mutually incompatible observ-
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ables) we need to make use of the complete infinite set S(E) of events
associated with these observables, and this will force us to speak of events
which haven't occurred, and hence, to treat events as abstract objects. But
when we make the switch from events to propensities, we hold the state
fixed and claim that each such state already generates a set S(P) of pro-
pensities which gives rise to the appropriate sort of structure. And since
any actual quantum system is always in a particular state, this enables us
to claim that any such system already has an infinite collection of propen-
sities which gives rise to an appropriate sort of structure, i.e., a (nominal-
istic) orthomodular lattice. In other words, all the propensities needed to
generate an orthomodular lattice are already contained in a single quan-
tum system. (Actually, every quantum system generates many L(P)-style
lattices, one for each of its states; e.g., every system has a spin state which
generates one infinite collection of propensities that can be formed into an

orthomodular lattice and also a position/momentum state which generates
another.)

4. The nominalistic status of propensities

I still need to argue that propensities are nominalistically kosher. (If
they’re not, then no progress will have been made—I will have merely
replaced one platonistic structure with another.) The main worry that one
might have here is, of course, that propensities are properties, and prop-
erties are abstract objects,

There are two strategies that nominalists can adopt here, and I think
both are acceptable. The first strategy is to take quantum propensities of
the form (4,A,r) as the basic entities of our nominalistic structures and
simply argue that these things are nominalistically kosher. This is the
strategy that | have been assuming throughout. But there is another way
of proceeding which, [ think, most readers will find less controversial, and
that is simply to nominalize away the commitment to propensities and
build up our nominalistic structures out of quantum systems themselves.
That this can be done can be seen in the following way.

Propensities are just physical properties, like temperatures and lengths,
and so we can get rid of them in the manner of § 1. The strategy of § | was
not to introduce a continuum of length properties (e.g., being-5-feet-long,
or being-17.3-feet-long) which is isomorphic to the real number line; it
was, rather, to introduce the comparative length-relation > and use this to
order ordinary physical objects into a structure which can be embedded in
the real number line. Thus, presumably, we can do the same thing here:
we can eliminate references to r-strengthed propensities by introducing
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propensity-relations that hold between quantum systems. That is, rather
than building up structures from things like (Sx, +, 0.5), we can build up
structures from the quantum systems themselves, Thus, we will replace
sentences like, “State-y electrons have r-strengthed propensities to yield
values in A for measurements of A”, with sentences like, “State-y elec-
trons are (4, A)-propensity-between state-y, electrons and state-y, elec-
trons.” Now, | do not want to suggest that it is trivial that talk of
propensities can be eliminated in this way, but | do not foresee any real
problems. Thus, in short, it seems to me reasonable to suppose that if we
can nominalize length and temperature in the manner of § 1, then we can
also nominalize propensities in this manner,

But while it seems clear to me that this strategy will work, it also seems
to me that the first strategy will work, i.e., the strategy of taking propen-
sities of the form (4,A,r) as basic and arguing that they are nominalisti-
cally kosher. I do not have the space to argue this point adequately, but I
would like to at least indicate the line of argument that I would use. First,
I would carefully distinguish physical properties—i.e., properties of par-
ticular physical objects, e.g., the temperature of my tongue, or the 0.5-
strengthed propensity of some particular z+ electron to be spin-up in the
x-direction—from properties-in-abstraction, i.e., Platonic Forms. [ would
then admit that if there are any properties-in-abstraction, then they are
abstract objects, but I would argue that (i) physical properties are not
abstract objects, i.e., they exist in spacetime and are, therefore, nominal-
istically kosher, and (ii) in order to nominalize QM by means of the first
strategy, i.e., the propensities-are-basic strategy, we only need to make use
of physical properties, i.e., we needn't appeal to any properties-in-abstrac-
tion.®

The argument for (ii) would be based upon the fact that all the propen-
sity properties needed to generate an orthomodular lattice are already
contained in a single quantum system. The argument for (i), on the other
hand, would need to be quite long, but my general strategy would be two-
pronged. First, I would try to show that all the arguments for thinking that
properties are abstract—e.g., that there are uninstantiated properties—
apply only to properties-in-abstraction and not to physical properties. And
second, I would provide positive argument for the claim that physical
properties exist in spacetime by pointing out that they are causally effica-
cious. For instance, if we consider a particular particle b, it seems that b’s
charge causes b to move about in certain ways in a magnetic field; but
given this, it seems obvious that b's charge exists in & (although it might

& Putnam (1970) seems to adopt something like (i); Field (1980, p. 55) men-
tions this as a strategy that one mith adopt in trying to nominalize physics, but
he doesn't pursue the sirategy at all.
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not have any exact location in &) and it seems almost crazy to say that it
exists outside of spacetime. What would it be doing there? And how could
it have causal influence from there?’
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