Directions: Show ALL of your work to get credit. If you leave something out, then you may be penalized. No calculators. Good luck!

IMPORTANT: This quiz has two sides. Look at both!

1. [10 points] Consider the vector field given by $\mathbf{F}(x,y) = \mathbf{i} + x\mathbf{j}$. Plot the vectors at the points

(1,0), (0,1), (-2,-1), (-1,0), and (-2,1).

(x,y)	F(x,y)
(1,0)	21,17
(1,0)	<1,07
(-2,-1)	<1,-2>
(-1,0)	<17-17
(-2,1)	<1,-27
	• /
L	

2. [10 points] Find the work done by the force field $\mathbf{F}(x, y, z) = \langle z, x + y, 2 \rangle$ on a particle that moves along the line segment from (0, 1, 0) to (1, 2, 1).

Let P be the point (0,1,0) and Q be the point (1,2,1).

The line segment is given by $r(t) = \langle 0, 1, 0 \rangle + t \langle 1, 1 \rangle = \langle t, 1 + t, t \rangle$ $0 \leq t \leq 1$

or
$$\begin{cases} x = t \\ y = (+t) \end{cases}$$

$$\begin{cases} x = t \\ z = t \end{cases}$$

Work =
$$\int_{c}^{1} \vec{F} \cdot d\vec{r} = \int_{0}^{1} \langle t, 1+2t, 2 \rangle \cdot \langle 1, 1, 1 \rangle dt$$

= $\int_{0}^{1} (3+3t) dt = (3t + 3t^{2}) \Big|_{0}^{1} = 3 + \frac{3}{2} = (\frac{9}{2})$